{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "r-xn3WLqP2wM" }, "source": [ "# Video 11.2: Types of Clustering Algorithms" ] }, { "cell_type": "markdown", "metadata": { "id": "T9ckFFHNP2wQ" }, "source": [ "## Video" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "fTCqwicVP2wQ", "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 449 }, "outputId": "dbc63607-911f-4623-bd61-b7658c31a11e", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Video available at https://youtube.com/watch?v=4Sa2l4DWWXM\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ], "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBUYFRwaGRodHRsfIiojIiIiHzEtLSkvODYxMjAuMy03SFBCNztLOS0tRWFFS1NWW1xbMkFlbWRYbFBZW1cBERISGRYZMBobL1pCNT5YV11XV11gWldXV1dXWFddV1dXV1dXV1dXV11XV1dXV1dXV19dV1dXV1dXV11XV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABAYBAwUCB//EAD8QAAIBAwEFBgUBBwMEAgMBAAABAgMEERIUITFRkgUTQVNxkRUiM1JhNCMyQnJzgbEkocFDstHhYvAlNYIG/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwUE/8QAIREBAAICAwEBAAMBAAAAAAAAAAERElECFDEhQQQysSL/2gAMAwEAAhEDEQA/APn4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8bOtJJqlUafBqDwZ2G48mp0MJlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQxsNx5NToYMo2jgkbDceTU6GNhuPJqdDBlG0cEjYbjyanQzErOvFNulUSXFuDBlG1t7L/AE1L+REojdl/pqX8iJRXl8v7SwDIDLAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDAMgDBG7U/TVf5GSiL2p+mq/wAjDXH+0I3Z3ZlxK3pyitzimvmJPwm65LrOr2F+iof00Tg7cvZVz4Tdcl1j4Tdcl1ljBGVc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdY+E3XJdZYwBXPhN1yXWPhN1yXWWMAVz4Tdcl1j4Tdcl1ljAFc+E3XJdZH7R7MuI29SUksKLb+YtZB7c/RV/wCmw1x9hq7EuaSs6Cc4pqC3akTdro+ZDqRS7L6MPQ3g5R9lbdro+ZDqQ2uj5kOpFSARbdro+ZDqQ2uj5kOpFSAFt2uj5kOpDa6PmQ6kVIAW3a6PmQ6kNro+ZDqRVKdOU5KMVmUnhL8nu5tqlKeipHTLjgFLRtdHzIdSG10fMh1IrNOzqzpyqRi3CPF7jQClt2uj5kOpDa6PmQ6kVSEJS4JvCy8Lw5myjbSnTqTWMU0nLP5eNwKWfa6PmQ6kNro+ZDqRUgClt2uj5kOpDa6PmQ6kVIAW3a6PmQ6kNro+ZDqRUgBbdro+ZDqQ2uj5kOpFUdOSaTTTeGsrGc8Ge7m3nSm4TWJLjvyClo2uj5kOpDa6PmQ6kVIApbdro+ZDqQ2uj5kOpFZuLWVNU3Jr9pHWscvybbfsu4qxU4QzF8HqX/kLisO10fMh1IbVR8yHUiuXXZ9ajFSqR0pvHFP/AARQkwtu10fMh1IbXR8yHUipG+jbSnCpNYxTipPP5eNwIhZtro+ZDqQ2uj5kOpFSAFt2uj5kOpDa6PmQ6kV26sJUopznDU8PQn8yT4NoiBZilt2uj5kOpDa6PmQ6kVIzGLbSXFvCCUtm10fMh1IbXR8yHUisXVtUoy01IuMsZx+DzXoTpy0zWHhPH4fAFLTtdHzIdSG10fMh1IqQAtu10fMh1IbXR8yHUipAC27XR8yHUhtdHzIdSKkALbtdHzIdSG10fMh1IqRtdtPulVwtDlpznx48AUtG10fMh1IbXR8yHUipAC27XR8yHUhtdHzIdSKkALbtdHzIdSG10fMh1IqQAtu10fMh1IbXR8yHUipAC27XR8yHUhtdHzIdSKkAUtu10fMh1IbXR8yHUipAC27XR8yHUiF21c0nZ10pxbcHu1Ir5pvPpT9AvGPrFl9GHobzRZfRh6G8Ly9kAAZAAAAAErsz9TR/qR/ydHtVOtSc1vnRqypy/MW3p/8AByrSsqdWE2sqMlLC/BNsu1VSr1aji5QqNvT+c5j7B04zFVKfJqnRrW6/6VDMvzOTyyH2fQ1Qji07xN4lOU2s7/4d6XAi0L7CuNSblWi1nk28m5X1CVOkqtOblRWIqMkovxWfH2BcSm2UKdG5uaagpKMJtNt504Xy/wDs0dn1aTpXcnTxT0wzCMnz5v8AJqXakNqqVnBuFROLjnfhpL/g0xuqUIV4QjPTUjFR1NZWHl5C3H+tt1TpVLaFanTVOXed24ptp7sp7zovsynCoqWzqUNylVdTEs+LSzuS9Di7Utl7nDz3uvPhwwSq95a1pd5WpVO8wtWiS0yx4796CRMPdG3oU6NadSHeOnVUI78Z9ceB6uHaU6dKt3GXVT+RzemOHhteOSErqKt6lJRa1VFNb9yS8Dzc3KnQo00mnTUk3zy8guKS7m0p07xwhSlVi4qUaab8VnjyRtvbSMbdVZUFSlGok4qTakvd4NfxaO0SqaJaJU1Tazh8Espmmtd0NnlRpQmk5KWqTTb9cA+fU3tO5oqdJSt4SzSg1mclhPO7dyPNWxoQr3MnDNKik1BN728YWeREurylVp08wmqsIxhnK0tL8cTbLtWDr1pSg3SrJKUc4e7g0+YW4aVVo1KkNNu85eYQk8S5Y8US7uyWzTnK3VCcHHGmWcp7sNZZooX9CjVhOlSnhZUnKXzPO7djcsGJXlvGhUpUoVPncW5Tkm9z/AT5X07W+na/0V/k8diL/WUf5v8Ahmu9ulUjRSTXd01B58fyeez7hUq8KjTai84QS/8Aq0q0t6bdxWqR1RpP93ONTcmll8jM6dGtbTqQpqlOnKKai201J48fE02l9GEqqnByp1f3knhre2mnz3nqveUlRdGhCUYykpTlNpyeOC3eAX5STcK1oVVQlRVTGlTm5NPL44S3HrZlRV/TTyowjj0yn/yap9oW1ScatWlN1VjOmS0ya4N+Jp+IuW0uazKukt3BYef8AuEnZoK3hOnQjWTh+0lqeqMvRcEjk0pxjJOUVNLjFvGfY6NpfW9FqpCnU71RxjX8jeOPP+xzAnJYr6jSr3vdygoqMVOc03lxUU9PJEO3Vvc95CNFUpRg5wkpN8PCWTXPtX/V9/GO5pRcX4rGGFe29OM+4pzU5xcczknpT4pYDVxb3BW9O0pVZ0e8nNyW+TS3Pizn231Yfzx/yjbWulK3pUsPNNzbfg8mijPTOMuUk/ZhiZdztVbQriH/AFaEpOP/AMoeK/sLi0jWvlGWdKpRk0nxwuGf7nNfaDV3K4gsZk3pfinxTN9XtZbV30YfK46HBvisYaDdxPrdc2UXQqSlQjQlDEo6amdS8U1l7yJ2hQhDuNKxqpRlL8t8Wa68rTS+7p1VJ8HKSwvbib9voShT72lKVSlHTHEsRklwz4hPiUrK3V5cQlD9nTpuSSbysKL3f7mijG3qKrXdFRhSjFKmpP5pN4Tb48jzPtOLr16ml4q03BLdubSWf9jRYXkaaqQqRc6dRJSSeGscGgXFt9anRq2s60KapTpyipKLbTT3Lj4m2/tqcKWadCM6TisVlNtp/nl6EaveUlR7mjCSg5KU3N5cscFu4I9xvrenCoqNOopVI6WpSTis8fy/7g+PdWNvbxpRnRVWc4Kc25NYzwSx6GqVtTdrGcY4lKu4Jt/w43JnrbrepCn39Ocp046U4SSUkuCf/o0zvF3Cpxi4tVnUXJLGEgXDrvsynGr3XcJ0+DqupiWcfvYzw/GCDb0KEKFadSHeOnVUI/M0n648PE8V7u0rT7ypSqd4/wB5RktLfDO/eiPG6iradHS8yqKafgkvALMwmVbSlV2aVOPd99JxlFNtJp4ys/3NV7Wtk6lONDGluMZ63qyt2X4eBrV/pp28Yp6qMpSy+Dy8nu7ubWeuUaU1Unzn8sW+LXiwz8dBdmxp93DZ41U4p1Juph5fHSs+Bxr6gqdacIvKjLCf4JVS8tqqg61Op3kYqLcJLEkuGc8CBUcXJ6Vpjncs5wvUHKY/HkABgAAAAADTefRn6G403n0Z+ga4+wxZfRh6G80WX0YehvBy9kAAZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTefRn6G403n0Z+ga4+wxZfRh6G80WX0YehvBy9kAAZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTefRn6G403n0Z+ga4+wxZfRh6G80WX0YehvBy9kAAZAAAAAAAAAABJsLR16mhSSeltZ8cb8Hrs2wlc1HCLUcRzlr/Y8WFfuq9Op9sln04P/AGZ16ydoq81xlXio/wAq+d/5wG+MR65NlZyrVe7zpwm5N+GOJGO/d0lQ2uquFTTGH/8AfzMalQoUFTrQouUNcs03Jzb5tLh4YC4uACwUVbutc1qbilGEXFuL0xk+MtJFv7mnO3xOtGrWU/lkoNPT4p7gmKH2laqjWlTTbSSeX+Un/wAkUs3aa7rva1JKVX5Yyb/6a0rel+eZWQcoqU+47KnSo95OUcqSi4Le1nm+f4PFh2fOu9zjGOUnKT3ZfBJeLN1L/wDXVP60f8Efsv8AU0f54gqLhpr0tE5QznS2s+hrJV5PTdVJYTxUbw+HHxNVxW7ypKeIx1POIrcvQMykrsubtdoUk1vbjjfhPDZosrSVaooRaWctt8ElxZ2LOuoUbRS/cqd7Tn6Slj/ODT3DtKVTV+/Uqd1H+RP5n/fcG8Yc29tnRqyptpuPivHxNB3bmNXb68qbhHSsynNborC3+p57QxUtqUpVI1Zd7o7yMcbmuD3IJPFxCVdWsadOjNNt1IuTXLfjcT+07+pRrTowUVSitKg4rD3cX+d5m4v6tC2te7wm6bbk0m9z4b/AFR9cq2pwnPE6ipxw/maz/bcaixRpxXae6KSdNyxjdlx3kShcyo2EJQUVN1ZJSay1u8PYGLkA7/dQr3FpKaWalPVPC3Saz/4MVLynKNWNWvCpFxeiCptaZfw4eN3IGLh04apRj9zS99xsu7d0qs6beXF4yvExa/Vp/wA8f8okds/q6387CfiECzXFaFCtGmq8IUoJKVJ0m9SxvbeN7Zz7bVF1p0KkKVFTwqko7/xFbmwuLkg711h3FlPMZOeNUksKWJccHnbJzvoUvlVONf5YpLwbWf77wYuGbZU4d1GSqJzbacMb0ueTs293KrVr0JKPdaKmIqKWHHOGvyQ5foaH9aX/AADFzQWWpez+IdwlHupS0yjpXzZWcv8AJFsqco0KzouMKnfaIyk0vlX8Kb8QYuISKNo50alXKSp6crHHLwS+3LrvJwipxlogtTjjGv8Aix/sYsv0V160/wDIKi6aKli49x8y/bJNbuGXjeabqg6VWdNvLi8ZOnX49n/yx/7kQ+1/1Vb+dgmKQwAGAAAAAAAAAAADTefRn6G403n0Z+ga4+wxZfRh6G80WX0YehvBy9kAAZAAAAAAAAAAAJd52hUrRpxnjEFhYXHwy/zuIgC2l3PaFSrSp0pY00+GOL3Y3nql2lKNNU5Qp1Ix/d1xzj0ZCAW5S6faFSFWVSKgtSw46fla5YPNzea46VSpU1nPyRw3/cjAJcpy7Vq99KriOZR0yjj5WsYw0Qs7/wDgwAW6K7XkoaO4t9LeXHu92efE0Wl86LbVOlJ5ynKOWvTkRQFylKuL51Jxm6dOMk9Xyxxqec7+Zqua7qVJTaScnlpLCNQCW3VLmUqVOm8aaerGOO95ZsvO0KteUJTxmCSWP8kUAuU1dqVe+nVxBuosTi18rXLB5ue0J1Kap6YRgpakoRxgiALcuhLteo1vhSc8ae8cPmx6kWvcSnCnB4xTi4xxy/JpAS5lN+KVe/77EdWnTweMYwaHcydFUt2lSc1zzjBpALlJlfVP2WMJ0ViDXrneba3aTmpfsaKlLjJQ3/8ApkEBbl6hJxkpLimmv7E247VlU1aqNDMuMtG/1zniQAEiZhPXas2oqdOlUcVhSnDLx4eprodoTgpxcYThN6nGUd2eaxwIgC5SmVe0qs50ptQzS/dSWFxzjBqhdzVfvt2rXr/Gc5NACXKRRvJwqSqJLVNSTyt3zcTG1S7qFLdphJzXPLNABaVK/qO47/Edec4xu4YOhY3P+nkoVKUasqrlJVeGP/jnccUBY5TDo9rVKb7vDpyqJPvJU1iLfh6kSldSjSqU1jTUxnnu3rBpAJn7aTO9m+5yl+xSUd35zvNVxWdSpKcsZk8vHA1gJYAAgAAAAAAAAAABpvPoz9Dcabz6M/QNcfYYsvow9DeaLL6MPQ3g5eyAAMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpvPoz9Dcabz6M/QNcfYYsvow9DeaLL6MPQ3g5eyAAMgAAAAACb2TawrVtM86VGUtzw9xtdrb1KFSpR7yMqeHKM2nlPk0GsXNBKfZtyoa+6npxnOPDnjia6FpVqLNOEpLONy8eISpaQdKHYtd0pT0S1xkoqGOPN5/Bzsb8Pdvw/wAAmJhgHXtbSzrylSp96pqLcZyaw8c14HKhTlKLkotxXFpbl6hZinkG62dJS/axnKOOEGk8/wBzo3NvZwjSeis3VjqilNbvBJ7gRFuQDa7eoqnduL15xp8cnunYV5PEacn8zjuXiuKCVKODbXt6lOWmcXGXJmyt2fcQhrnTko82uHryBUowJNGwr1I6oU5SjzS/xzIwAEqn2bcyhrjSm48c44+iJXY9g5qpUlSdRRi9EeClLkFjjMuWDbc/Ul8mjfjQvB8ifVtbW30wrKpOq0nJQaSjnw38WEpywdKNCg6NzKGZKCp6HJYay96/4IFSlKCi5JpSWqOfFcwTFPAN6s63ed1ol3n243m+27KrTrxpSjKGd7eM4XMFSggk1rGtCoqbhLU29Kxva5nm5s61LHeQlFPg3w9wVLQCRKwrqEpunJRik28cE95subbNVQpUpxbgpaZPLe7LfoCpQwSKtjXhBTnTlGL8Wv8A7gzQ7PuKkdUKcpR5gqUYHutRnTk4zi4yXFMn9kWFKrqlVbjBOME0/wCKT3AiLmnNBOsLVbZGlUWUpuMlzxk0ws6lSpONKDlpb4eG/mFpHBvr2Vam4qdOUXLdFY4+h6r9n3FOOqdKUY82uHryCVKMCRQsK9RJwpyknnDS5cTarXXCioUp65uSbb3Sw/BfgFShA6dTsuVK6hCcW6bqRipNYUuGTXe9nVYyqTjSkqUZSw8bsJ/4C4ygA30LOtUScISkm8JpeJ7j2bcuTiqU9UeKxwCVKKDbStas5uEYSclxWOHryMV6E6ctM4uMuOGCmsABAAAAAANN59GfobjTefRn6Brj7DFl9GHobzRZfRh6G8HL2QABkAAAAAdP/wDzz/1Dys/s57v7Gqpfp0+6pUo0oza1b22+SbfgRKVWcHmEnF4xlcnxPAay+Ustnbxp3mjNedRReqbfyb17tHOt6ko2FbS2s1Yp45YInxG5wl31TEeHzM0qrPS4anpby14N8w1lH46NvrlY18OTfeQ4NtnMw848TZQuqtJt05yg3x0vBr1POc785z+QzM27HdTtKTSjKVxUjh4i2qceWV4s51F1lSqKGru93eY4fjJ7+KXXn1Oo0KvNKUVJ4n+8s8fULMw1nS7W+la/0f8Ak5p6nVnJRUpNqKxHPguSDMSsMWpab54+Wk9X9RfKv/v4IdPvn2dJw1PNZuenjjC4/wByLO7irSNGOcubnPPD8JHql2g6dsoQlKNRVHLK3bsY4h0t06G6XZ6q/vZl+9xx/Dn++DQ7mNOpW/Y3DnJSjPVLK9XuOPWrznLVOTlLm3vN0+0biUdMqs3HhjUEydCySrxo0Jxq05xT7upHhh796/5RyYxSmlLgpYfpnebYX9eMNEas1DhhSI4Zmbdy+jcfEY6deNUNGM407v7Y4mXJa+0ND+XS8Y553/75OVG/uFDQqs1HhjUaYVZxUlGTSksSS8VyYayISxJN+DTOp27bzlcOrGMpQqKMoyisrgt245JvoX1emtMKs4x5J7gzE/KlNt6M6dtdxnFxlik8P+Ydo29SpTtNEXLNFRWF45e45/f1MSWqXz41b/3scMnuneVoQcI1Jxg+MU9wW48de+rune3GacpwlBQnpzlJpb0/DgeKFsqV5auMpuFTfFT3NLfuZy4XtaM3NVJqbWG872eKlxUnPXKcnP7m94XJ1+y4tVrnUp69E9KW6T379LfiR61zBW1SnClWScovNSWVFr+3FkOpeVpTU5VJuUeEs716Cve16qxUqTkuTe4Jl8pN7frT7yENT0qjDdndvW86EH/+Spf0F/2sr1SrKbzKTk8JZfJcEe9qq61PXLWlhSzvxwwDL7ab2fVnOhd65OWaak8vO/PE6EaPy2tRur+zpxemnByT8eK4PmV+FWUVJRbSksSx4rkzqSvqE1TbqV6WiKjop4xu8Vv8QvGdubdVNdScmsZk3jl+Dq1YUadvRpVKkqc/qvTDVvf7ufRHN7Quu+rTqY0qT4f2waqtWc5apycnwy2Gbq1glGMr62rweYVd+cY3pYe402lDvLatFuSTr8YRcnu5peBx4XVWKiozklF5jh8HzRNtbyl3DpTlUpy1ueuH8X4fiG45QnW9VSv6axJaKThDvFhykk8SwyP2QqqnXdXVo7uXeas4z4cfEjdo30aipRg5tUk8Tm/mbZHrX1epHTOpOUeTYTKEyrVnHs+goyaTnPOHjODNw8Wtpv8A4p/9yObKrJxUXJ6Y5aXgs8TMqsnFRcm4xzheCzxwGcnWvlL4msp472GOOP4eBsta05do1VKTafeRab3YSeFj+xyZ3teWnVUm9DzHL4PmjxGvUU3NSam85lnfv4hrL6nqpKPZ2ItrVWaeHxWOBs7RuKmiz+eX01Lj454nL72ejRqenOceGeYnVnJRTk3pWI7+C/ATJ2ruv3d3dJ05Tpz0qenc1uTTyc7tS1VKcMSlKMoKUdX7yTzuaNcL6vGbmqs1KXF54+pqq1Zzk5Tk5Sfi3lgmbeAAGAAAAAANN59GfobjTefRn6Brj7DFl9GHobzRZfRh6G8HL2QABkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANN59GfobjTefRn6Brj7DFl9GHobzRZfRh6G8HL2QABkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANN59GfobjTefRn6Brj7DFl9GHobzRZfRh6G8HL2QABkAAAAAAAAAAAAAAAAAAAnxpQ2GU9K196lq8cY4EA69nbTq2MoU1mXfJ4ylux+Q1xc+0tJ1ZNRwklmUpPCiubZ6urGdOMZ6ozhJ4UoPKzy9Tpdm0Z01XoThDvZxjKMZtYlhvK3M8XFStThBVKNOlT72MsR4trxxl+Aax+I1TsmrFPVOkpqOp09fz448Dbe9mQp0Kc41KeXFuXz51b/AODme+1Ozqs61WstLpSzNT1LGMcPXwPN1QlUs7ecEnGnCanvXy7wTHvxBr2k6bgpYzOKksPwfDJvh2VWlWqUVpc6ay9+7w4e5NubSdZW9WDj3apxUpOSSjpe/JtqS/1V80/+jL/EQYw5i7Mm6jhGdOWI6pSU/livyzxcWE4KMlKE4SelShLKzyfIl9iTWivTShKc4x0xnwlhvKPV068acYTo06UHUi8R4t+mWCoq0W87LqUItzlTyn+6pfM1wylyNF1azoz0TSUsJ7nniSe3Hm8q+Pzf8Ij3ltOlPRNpywnueeP5DM1+J1jGMbSdTuY1Z96o74t7sZ8D12bUU72lmjGnufyqLWdz3tM9dmqu7KaoNqffLhLDxpM2FOvG+pOvnU097knuw1xDcfiNFLYKjxv7+P8Ag8rsio8qM6UppZ7tTzLB7p42Cabx/qI/44nWtbWNK4WijTVJL5arnmUsrw3/AO2ARxtV2WGdKmq9OirWEoSjDMsPKyt7yV6XiWa6V73tN0ZYpaIZzNaeG/KYTi4mxKVapGE4KEG/mnLCxnC3+Jmr2bOMoZnTcKmdNRS+Xdx3+B0e4t6txcypwjU04dOnqwpP+Jo19rRcbWipRhBqcswg9y/9gx/XuXY1NXigp0+71L5HU+fGFuxzIdbsuXeVFTnTlpUp6Yzy0k+HqT7yk49oQrvHdSqQ0zyscF/4Ir7y1vVOaxGU5eK3xb3/AOzCzEIFO1lKlOqsKMMJ5fFvgkaTr9s040KcLeLzmUqkv7vEF7HIDHKK+AADIAAAAAAAAAAAAAAAAAABpvPoz9Dcabz6M/QNcfYYsvow9DeaLL6MPQ3g5eyAAMgAAAAAAAAAAAAAAAAAAAAKDIAAABAABQMAAAAAAAAAIAAKAAAeoSSkm1lJrKzxXI8gDffXTrVZVGsZ4LkuCRoAAAAIAAAAAAAAAAAAAAAAAAAabz6M/Q3Gm8+jP0DXH2GLL6MPQ3mqyi+5hufDkbtD5P2By9lgGdL5P2Gl8n7BlgGdD5P2Gl8n7AYBnS+T9hpfJ+wGAZ0vk/YaHyfsBgGdL5P2Gl8n7AYBnS+T9hpfJ+wGAZ0Pk/YaXyfsBgGdD5P2Gl8n7AYBnS+T9hofJ+wGAZ0vk/YaHyfsBgGdL5P2Gl8n7AYBnQ+T9hpfJ+wGAZ0Pk/YaXyfsBgGdL5P2Gh8n7AYBnS+T9hofJ+wGAZ0vk/YaXyfsBgGdD5P2Gl8n7AYBnQ+T9hpfJ+wGAZ0vk/YaXyfsBgGdL5P2Gh8n7AYBnS+T9hpfJ+wGAZ0vk/YaXyfsBgGdD5P2Gl8n7AYBnS+T9hpfJ+wGAZ0vk/YaHyfsBgGdL5P2Gl8n7AYBnS+T9hpfJ+wGAZ0Pk/YaXyfsBg03n0Z+hv0vk/Y03sX3M9z4cg1x9hauw/0VD+micQew/wBFQ/ponBOXsgADIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQe3P0Vf+mycQe3P0Vf+mwvH2FbsLmsqFNKc0lHdhskbXcffP3Zu7L/TUv5ESy0zy5/Zc7a7j75+7G13H3z92dECkzc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j75+7G13H3z92dECjNztruPvn7sbXcffP3Z0QKM3O2u4++fuxtdx98/dnRAozc7a7j76nuyPf3NZ0Kic5tOO/LZ2SJ2p+mq/yMLx5fYOy/01L+REsosbiqlhTmkvBSY2qr5k+pi3ef40zN2vQKLtVXzJ9TG1VfMn1MWnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TM7VV8yfUxZ1p2vIKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUzO1VfMn1MWdadryCi7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKNtVXzJ9TMbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUzO1VfMn1MWdadryCi7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Ci7VV8yfUxtVXzJ9TFnWna9Aou1VfMn1MbVV8yfUxZ1p2vQKLtVXzJ9TG1VfMn1MWdadr0Re1P01X+RlP2qr5k+piVzVaw5zafg5MLH8aYm7agAR9YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9k=\n" }, "metadata": {}, "execution_count": 1 } ], "source": [ "# @markdown\n", "from IPython.display import YouTubeVideo\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(YouTubeVideo(id=f\"4Sa2l4DWWXM\", width=730, height=410, fs=1))\n", "display(out)" ] }, { "cell_type": "markdown", "metadata": { "id": "XMhhhdFCP2wS" }, "source": [ "## Notes\n", "\n", "\n", " Click here to download notes\n", "\n", "\n" ] }, { "cell_type": "markdown", "source": [ "\"notes\n" ], "metadata": { "id": "P7tXrFlRKyGi" } }, { "cell_type": "code", "source": [], "metadata": { "id": "ImhKX3npaPP-" }, "execution_count": null, "outputs": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.13 ('mathtools')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3" } }, "colab": { "provenance": [], "collapsed_sections": [], "include_colab_link": true } }, "nbformat": 4, "nbformat_minor": 0 }