{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r-xn3WLqP2wM"
},
"source": [
"# Video 12.3: Practical steps for training"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "T9ckFFHNP2wQ"
},
"source": [
"## Video"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fTCqwicVP2wQ",
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 449
},
"outputId": "751c1bff-dfbb-4d5b-fd5a-3d607b72edeb",
"tags": [
"remove-input"
]
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Video available at https://youtube.com/watch?v=C3bf6Xw_l1g\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
" \n",
" "
],
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGRoeHRsfIiclIiIiIy0qLSUzMi0yMC0uLi01QFBCNThLOjAvRWFFTVNWW11bN0FlbWRYbFBZW1cBERISGRYZLxsbL1c2NT1XV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAaAAEAAwEBAQAAAAAAAAAAAAAAAgMEAQUH/8QAOhAAAgIBAgQEBAQFBAICAwAAAAECEQMSIQQxQVETImFxgZGSsTJTocEUI0LR8FJicuEFM4LxQ7LC/8QAFgEBAQEAAAAAAAAAAAAAAAAAAAEC/8QAGhEBAQEBAQEBAAAAAAAAAAAAABEBIUFhEv/aAAwDAQACEQMRAD8A+fgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS0O0qdvlt35ARBLw5bKnvstuYeOS3cWvgBEElB3VO+1EUgAJaH2fOuXXscnBxdNNPs9gOAHVFu9uXMDgJSxyW7i18Boe6p7c9uXuBEEvDlv5Xtz25e4jjk6qLd8tuYEQd0urp1yOAAdUXV1sjqg3uk3vXICIDVAADul1dbHYY5SdRTb9FYEQdarmIxbdJNv0A4DsYt7JNv0OAADsYtukm32QHAdaadNUzgAAAATnilH8UWr7qiKi+wHAdUW+nLmdUHV0671sBEHadXW3c4AAFAADqi6brZcwOAAAAAAOqL325cxGLbpK2BwAAAAAAAAAAAAAAAAvx8TJJKouuVq69igtx5IJbwUn3tr7BcQc23fXmWQ4h76vPdXqt8uW53xsf5S+qQ8bH+UvqkBGPESWTxF+K7K0zRjnCTSWJW3X4pHHlh+UvqkAxcU43aUnepN9H3HFf0f8InYThJpLCm3/ukWcTnx6q8NNRSV6n0X9wrEWYcum9lJNU0/mT8bH+UvqkPGx/lL6pBEJ55Nt293bS5fItlxEfNJReuSae+2/NkfGx/lL6pDxsf5S+qQVYuMpKo+bbU2/xJKqOQ4zTJtRpaHGKvl6/Pch42P8pfVIeNj/KX1SBfqtZKi49G0/lf9yBf42P8pfVIeNj/ACl9UgjvD5IqMlO96e3Wr2/U7DPGkpRe0nJJOk76P5EfGx/lL6pDxsf5S+qQVVOVtt827Il/jY/yl9Uh42P8pfVIJEsM4OCU/wCltpV+K1y+aOYX/Lyb1+H7jxsf5S+qQ8bH+UvqkFauDkloyTae/mlKnSXRLuU4cUoZHq2tTVvk/K+RX42P8pfVIPPB88S2/wB0gJZcyiqxveXmk1+kfgV8U052q8yT26Nq3+p3xsf5S+qQ8bH+UvqkBQehw2VY1CSlFJJuSveT3pd65Gbxsf5S+qQ8bH+UvqkDOI5oxu4yTT6b2vcqL/Gx/lL6pDxsf5S+qQRLhZRjDJLbWktF+r32JRzx145y5r8W3yf+divxsf5S+qQ8bH+UvqkFWcVPZJaau9pOTb778iyGeEVqu24KDj1XRsz+Nj/KX1SHjY/yl9UgI61HUo201W6p87/Y0+Jj0U3dxSSS/A+bfz+5R42P8pfVIeNj/KX1SAbeHJJ35ovtap9Cgv8AGx/lL6pDxsf5S+qQRXiScop8m1ZqeZeI4X/K3jXT3973sp8bH+UvqkPGx/lL6pBV/BZEoNW1K72aWpdrZBK3lj5U5U0rVc7q+RDxsf5S+qRzxsf5S+qQHIYLmoWr9N965Enwr03fm2bj1SfJ/b5iOeCdrEk1/ukSXFxUtShUu+uVg47Dh4KUtbdRS1V3e1fqcWBR1uaclClSdXfqMfFxi7WNW+fmbO/xkakvDXmpy8z3oHDhVGSy81HSnXN0pLY5kytQi4VGMr2XPZ9XzZFZ4L/8S+qRNcTj0OLxLncfM+fX/PQDIC3Jkg1tjUX3tsqDIAAAAAAAAAAAAAAAAAACNEs8JO5Y7k+dSpP1ozkpwcXTVMCyXEOqilBdo9fd82UgAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALHjXhqXq0/0aLF58b/1Q5f8AF/2f3I6l4VXvruvgd4blkfTQ182qCucKk5bq/LKk+6Qm8bWylF9rTX9xwkqywfqcnmbWl00uWytfEHiE8bjV9Un8yJqjg/m6G20lfq9rpDjcUY6XFVapq7prn9wRlBthwsUmnu5r+W/hd/sUwWPZS131arb4dQRQD0eK4ZRUkoXX4WlK/VtvY84G5ABGzwcerw/PrutW1X7dviCMkItulz96NU+CkoRa027vzx/ucwcG5NW6Ti3fryS+ZyeOXhQ2ezd/Gq+zCxnao4dkqdPmW4cSacpNqKpbc230QZXf+VX8+T7pP9Cjhf8A2w/5R+5s43h3kyJw38sYyv8ApaW9kI8Kk8coS1b21ydJ81fTYjW51Rl4eSbe1b8pJ/uUG3+D/mO2nFt6af4+b2O8TijKvD0pxVSWqt+6b59vgUjCDrVE8GF5JKK6/olu2GVYL54ouLlCTdVaap79S3HwkG1FzcZadTbW3K6CxjBo4nBGOnS3b6On9mSlwqXlt+Io6qrbvXvQIyg0yljSinG7jbknun9ic8EFqgr1wVuXR91X7gjGDRnxqLUEm5Krffbouxa8GJQTcpNyTapb86qq/cEYgbpcI/CtQppXJyu/h0/cr4nGlFOMa5KW7tOuoIzzjToiXJaJrWr2uvdWi3wVknHTtqjbSXKudL4fqCMgNXEYIxjcW7UkmnTra6tdTKE3It4fGpS3/Ck2/ZFuvXGdpJRVxS2StpEMH4ctc9P/APSslwknGOTTz09r6qwuMwNsJydqe60aqSSv40VLFCbWltLdtPekt276giiMW3SOGt8LvicW9OR0m+a3ojjwRaa1effSvbv7gjMWZseiVdaV+9bolw0E5q+S3fst2RmpSeqvxt167gVk5Y6jGXdtfKv7lj4SXmrfTzrp3+Q//D7T+6/6BFeHHrko9/07kX6F8fJjb/qnsvbq/wBvmTy4orHBKatpydp+3b0BGQFr4eSjqa2581fo6LuFjFRyOWpPT0S5NruCMgL3jx9Mj+Mf+ygIAAAAAAAAAAAWeL5NNUrt+pWAAAAn4fl1Lo6fp2LMyrHjT5+Z/B1X2K8WWUHcXRyc3Jtt231CuJiUm3bbb7s4AiWt1Vuu1kQABf8Axcq6XVaq83zKABLW6q3XOr2JLNNPVqlfe9ysAGyzFmlC9Mmr7FYAlHI09SdPuMmRydydsiAAAAGr/wAZPTxGN/7kvnt+5lOxk001zTtBc4u4jLK5Q2ST3pJXXeiCzS1arerv+hGcnJtvm3bIgq3Jm1KtMV7Ro28bxDePDKlcselyrfZtM80nLI3GMW9o3XpfMFQLZcRNx0uTcexUAi1cTPTp1OuRzHnnFNRk0n2ZWAULJZ5OKi5NxXQrAA6rvYliyuL2rfmnumW/xCW8IKMu9t17WFM/ljHH1VuXu+nwRnDYCJQm4tNNprqiUs8nJS1O1yfKisASeSTept33vc7jyOLtOmQAE8mVydt/t+hFM4ALsMkoZHe9JL4vf7DFxDiqST6pv+l8m0UgLV8OLlGCjHand9TnjOVRlSi2rpVXTb5lIBVmfJqk305Jdl0RbPJCUU3epR0pVt72ZgCtcs8JJ7uLlSeyrb151tyJ5skU7bUtaqai+1U0/wBjCAV2TTbpUuxwAIAAAAAAAAAAAAdSA4AAAAAAAAAAAAAAAAAAAJRg2nXRWyIAAAAAAAAAAAAAAAAAAAAAAAAAt4fDrlVpe/2XqVFmKcValHUn6018QJS4eWpqMZP/AOLv5HccfJkTW6p+29P7m3+IU+HlcXUJxrTLeqa3bW/IxS4i5TdfjVe26/sRrczE+FjBxyanJPT2T6r1Kp4lTcXqS5uqoljzqLbUdnGqb9t/miXD5YJSU02pdq/z4lRmOxi3yTfsWZsWmrfme7Xbt8SzHxChjWm1PVbfouS+4GagbsWfHXNRTk3KLjqtdEn8yvPljSjBLTpTdrdPruCMoNXi4lFJQuSS3ffrff0JYp4tUpNdqj9/8fcEUcPjUpqL5O/sQcNk7W/qaYSxxmpxlS38tPy7Pr13KMcblFJ1dbvoBWW+F/LUt7cq/T/s1z4bXk81QilvJ1b9RkxJKMPESgpSt2t7ezpeisL+XntA2vDiWODb3fNp3tz5d+nxM/ERipvTy2a3vmk+YTcVAAIAAAAALMWBz5VfZtJv2OQm4O1z639miWHFqtuSio83v+xfxuB3rTi1KKbafXk9nuFirLBOOuGy5Nf6X/Y5jxLTqm2o3SpW37HeH/Dk7af1tUdzf+vF7S+4DHGL8RRtrRatK9mjOaOCjc3H/VGS39jk8MdLcJatPPavivQCgGnRjilr1NySflra+XuS8CEG3PU4ppJR2btX8NgRkBqUMcZRk03CSez5ret65nJYLnFR06ZtJNXX67oEZga+IwQjFtWmnt5lLV8uRkBuQALoYVpTlNRvls3fyCKQacnCOObwrvdb16WFhhK3GbSXPUv7cwsQ4b+pd4S/Tf8AYpNPDafFjpbae26rmqI/wsu61Vem9/l+wIqhjcnUU2+yLuOxuORppqqXLskUp3S7F/FZp+JkWp1qltfqDxmBrnwTUXbqSVtU/vyKMWJyt2klzbBF3B8NKc4NJNale6v5FWTFO23GSt3yZbwsKzRSkpc91fZ9ymGWa5SkvZsCsFuVzenU27Vq3fM54EteivNdUEVgv/hJX0rnqvbbnuQy4XGrpp8mnaYWKwAEAAAAAAAAAABKORpOKe0qtd65EQABZjm4NSpPtf3Jz4ZpPdaoq5R3tft1J51HTBPVehcqrdthYzNtu3u2dnFp01TOyxNJN7J8t9/ei2H8yOn+uK8r7rqv7AZwAEAAAAAAAAAAAAAAAAAABPFlcXa9ne6fuhPI5O37bbV6IgALcuW0oxWmK3rnb7tjHmcVTSlHs/27FQAtyZrVRiorrVu/iyOLK4u11TRABavjxGyTjGVcm09vkwuIu9aUk3fbf0ooAKu/iZak0kklWnpXYT4huqSik7WnbfuUgFXZM+pbwgm+qW/9ikAIF2PiKSTjGVbq72+TKQBpXFy1Rk0nKL5vr6MrxZVG01cZc1y+RUAtX+NGP/rTTtPU3bVdiEMzU1Pm0736lYCVZ4nk01vqu/hyLMnEXdRSlL8T537djOAVryZoTtt5Fe7iqav03K8eSK1Rd6JfNVyZQAtXNxg04Sbknd1SJZMsKeiLTlzvp6IzgFa1mh5Zb64xSSra11sjlypt5Iy8z5qu6p7mYArTwebTqi2kpKvMrV2mrX7jiI5Gk5KKiuWnTW/sZgCgACAAAAAAAAAAAAADXl4zXGpar9Hs/dFUs1xScVaVat+RSAtacmTHLd69VJUqrZVzIcKm8ka6O2+yXMrglfmbS9FZZkzKtMFUeveXv/YCubVuuVkQAgAAAAAAAAAAAAAAAAAAAOxq9+RfLDFwc4aqTp6lXyYFM4OLpqmRNH48f+6H6x/6I4YKnKV6VWy6t9AsVRi3yOGrBOLntBR8suTb/pfcygAAEAdoKLfJAcAAHWmuZwv4v8a9Ix//AFRQAAAAA0cO6hOSS1Kuaul1/YDOCzLk1U6SfVra/gVgAAABdw/Dueqk2km9l6FUotOmqYHAdaOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA24cclJY2rhPk+npJGInHLJKlJpdk9guLeGi05N8lCV/FUv2GKLljlFby1KVd9mnRVLLJpRcm0ul7ELBWnFF4pRlNNLdaetVTZJZ1PVGVRhXl25VyMrZwFehnimpalBRS8klVvty5jJB1KLgljSbjKvk9XW+x552wtbscZZMSjvSTpp7Kt6kunud4eUXjilKUZJvVU1G+z39DAmcBVvESucntu+jtfMqADLbpUsre0vIml3aitv+iHEJuClKKjLU9kqtexmTDk3zd+4WtnEx1JtRjFxVtJdO6fVEcmKLgnCNOrabdvu10aKPGlp06np7XsdhxE4qlKl/nyBVRo4KbTlTabhLdem/wCxnARfFyyzSlJ9d/hZGeCShGb5Suv8/wA5EMeRxkpLmiz+Knbd866KtuWwUhws5K0va3V+3chjwyldclzbaS/Un/EycoNu9FV8HYxTjUoytJtNNK6avp8QcS4V14j7Qf3SOLisi/rlXrv9yUcmOFpJztVJvy7ehVlyamqVJKkgLo49c5vI9Fbyddfb1IPhnqSj5lJWn6ct+w/ipapN6Xqq01ttyOrjJefl5o6dtqV9AcQzYdKTUlJO1a7roVFkctRlFq06a9GupWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZw0FLJGL5NpEVBtN9FV/ECINGGSmvDl/8X2fb2KGgOAtx4bWptRjyt/ZLqdUFonydONP5gUgAAAAAAAAAADsYtukrbNEuByKKeiW97U+gIzAsyYJRSck1d8/QrAAAAAAAAAAAAAaJ4EsMMi5uUk/hVfuCM4AAAAAAAAAAAtzwS0V1in9yoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnhnpnGXZpmvEsWnItU2qT2ilya9fUwkozaunVqmFzXZtXcbS6XzLOMX82Xrv81ZDC4p3K2l0XX0foRyTcpOT5sC7idljXTQn8+ZLg4OeuC/qX2ab/AEK4cQ0qqMkuSkrr2Izzyk7uq2VbJe1AWS4dNJ425b6Xard8vgyxcEnLbIpRX4mrtd9mZseRxdp1un8uRd/F1+CMY27dW79N+noFyO8Rjx0pY70Wk0/xf2O5uGuXkS02lz5dPNfIpyZ9SpJRV3SJPi51zV7bpK3XK2E4uzcJGEZW3a5O1Un6LsYi98U3/RC++kpbBsaMWPGoa8mp26io0uXNtsmuDU98baVSfm6aavde5nx5nFNKmn0aTX6mv/x3ESea293Fr0rtXYLk3jNPDUdUZKSTp1e3zJZ06xpdIX+rZzPl5xUYxV711oT4m46aSdJN9WlyQRS5MtXCzdPS9+X+dCPiLw9Nb6rv4VROfFzlrt/jrV8OQFc4OLprcjFW0u5N5rcLSelJe+97kuHyqM9TT68unZr2A5mw6J6bUn6fY7PhpR5pc6dNOn2dBygmnHU2nfmpF088dmpSa1alGkq3vd9QK3wr3SlFyXON7/2ZnJ5ZJyk1ybbVkAjTwvCPI/xKKdpN9WldFeHA5ulyXN9vUsxcXoUaXnjel3sr613OLiq1aYqOqNPn812DXEcmCtOl6lLZNLr2o0zxyXDNOvLkTdNOrTX7Gfh+I0NX+G79VtVol/EqKUcd1veqvNfddgZGYljxuTpK2Jyt3SXoi3h5RSmpPTqSV1fW2gyjPh5RcU0vN+F2mnvXM5mxOEnFtWudF2XPCa0tSSj+Cu3Z/ccRkg40m5O/K2qaXZvqF4pzYdDStO0nt6nXw01DW4+Xv/1zLnKCg1q1f6VTuL679juXNDzyUm3NVVcuXN/AEZ5YZKKk1SfLdfYrNWTRkerXpbrZxe21c0Z5pJ7O13A1LHF4ozldRuO3Nu7S/Upz4kqcb0tJ79Om/wAiENUvKvevgTw5mtqUk6VO+9r9QOZsDhpv+qKl8y7wYRkoSUnLZNppVfZdSPGzuSTdtKm/W239zR/5LO45p1GKbrzVvvFBeKVw0VVqcm20tPo6K/4fzyjqVRu5egw8VKCcVvF9GRWbaa0rzVy6U7CcWY+FUm6yRpRcrp9OdohLh3cdL1KXJrr3L/8Axjp5dk7xS2fwK4cSuTWmOlpael83uF5FWbC4VfVWqdk1w2yuSUmrUX1X2R3NxNrSktKVRvmvUrnl1SUml026bJL9gnHZcPJQU3FqLdJkIY3Lkm/ZGqfGRdxcXpk9Tt730adbUQfEpY3CEWrfO96rkCYpeKW/le3Pbl7nPDlWqnp71t8zVLjNTfNR0aUvWkrY4fFJx0tfy3vdryvv/dAjGAAgAAAAAAAAAAAAAAAAAAAAAAAAAABbw2bw8kZ1dO67lQAlOVtvu7ImieFRgm1JuSu/6V6epHHCKjrlbV0ktrfXfsFikEoQcmkt29kjQ8OPV4dy1cr2q+1cwRlBOMFbUnpq/wD6IBAF8d8MvScf1TJY+FvSnJ3JJpRjdJ9WFjMC/FwkpycY06dXexHFh1W21FR5tgioF38O26i1La7T2r48jkcVZFGe2+4SKgWRwyk2km2uxDS7qt+wHAdkmnTVM4AALMMHKSSV7qwKwTzKpyS7v7kAAAAlCbi01s0Wvin/AExjF94rf/ooAAu4rN4k3KqtJfJJfsUgAAALuFz+HJuruMo/NUUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaseOcd4ZYpf80vmmXSzRdJSgpLm2rjK0r6eh54C1rnxEdeOq8jTclFK9+i22JZ54o5ZTi3PzNx2pc7XuYgCrIZXGWrZvnur/QjObk23u2RARZHJUZRr8VfoWfxCpXF2lVqVWulozgLV8OJcYOKSVtu+qv8A+juXidSlUUnKnJ9/bsZwCpxy1CUe7Tb9r2/Ul41qCkr0v5rsVE1juLl2q/j1CO+K9Litk3fy5GnHxMW22pa5VvGre1NX0vYxpXyNCXhbv/2dF/p9X6+gXDjppzpJLSlHbv1MwYCPQyvVmlj1Lw1yW29LZJjJGKnjljcYpaVJKXW9/f8A6PPAarXxmXJrlGUr3671uWcdelpRbjezpUl0pow2LCVwABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX8Lg1yd7JK2Qz49L2dpq0+6Zo4Oajjyye/4UldXdkZ5IyxUopOPLd8nzDXI7ggnw+XbeLg79N0/uZD0o6ccZpx8kopar3k207XQjw8seKOu1N77PZr2XTvYI886os0KcYTck1O09L7N9WmSnxnmWjyR2bS6vq2EjICeatctPK3XtexAIAAATx5XF2vb3IAC/wDi59Kj/wAUl+qKGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF/A/+2Px+zoCGKaT3SafNf29TufFpeztNWn3RPNly1U7p941+wj5sTXWG69nz/WgrOEW4IJ25fhirfr2Qy5dW2mMV6L9wiucabT5rY4X8WvNf+qKl81uUAAKAAAAAAAAAHbOAAAC6HDSkk1W/JNpN+yApB1quZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdg07pvS9ql2ZSANm6jPXkjJNbJSt30ZVwvOX/CX2I48cWt5qL9U6+aJuUYRai9UpKm6pJdkFc4dpqcLS1JVfdO6Dwad5tLtFNNv5ckUADZ/EQaxxcVWmptrf4exLDD+X5cccjcmm2ntyr29zCdBXpeEk1GOOMscncpvor6S6UkUuMZQUYrS0nJbLzJXvfNMx2TWaWnTqensFrZn4WMISem1W0k2239kjzztnAmpQVtLuzZlgnJeWPh6q8qpx6U/wDNzCXS4qbVOXbor25b8wYsxYlHU8iWlXH1bXYhixR06pN7uko/56kYcRJWrtN200n9zseJe9qLTd01tfpQOHE4VCVJ3tfqvRlJKc9TvZeyoiEa8XCwaSlk05HVKm1vyt9BlUdMHLV+HSqrmm7/AGOPiIXr0vXttfltde5S8rcXF97/ALhriM5uTbbtsiC3hnHxIa/w6lfte4ZVUTpabvzXy9DYuP1SSl+HVK33T5KuyKOGhBuOuVeZJ+3ULFMIOT27N/Is0rwr66q/QsajkcPwxbvVWyVdfkWcHGEsclJ72nGN1qdcgZjCW4cLlfOkm7rsasmGKipyh5tloT6u6/RHZqWKWZRbSiktm+rQWPPLsX4Mnsn+tfuaI6nicpucl2T3S7u09irBpWtytQkml1b3ToJGYGqOCMpQ02oyu+rVc0RyRxrTpt91d7e9LfmCM4NHEwjSlj/Byq90/UzhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZLFS9Vz3X6FYAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZizShemTV86JQ4qaVXqj2luvkUgFWPPLVq1NPutiM8kpO5Nt+rIgCayNJJPk7XoyUuJm2m5NtcioAW5M8pKm1XOkkvsVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXJtJdFyOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//2Q==\n"
},
"metadata": {},
"execution_count": 1
}
],
"source": [
"# @markdown\n",
"from IPython.display import YouTubeVideo\n",
"from ipywidgets import widgets\n",
"out = widgets.Output()\n",
"with out:\n",
" display(YouTubeVideo(id=f\"C3bf6Xw_l1g\", width=730, height=410, fs=1))\n",
"display(out)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XMhhhdFCP2wS"
},
"source": [
"## Notes\n",
"\n",
"\n",
" Click here to download notes\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"source": [
"
"
],
"metadata": {
"id": "ZLDbFTdEcINM"
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('mathtools')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3"
}
},
"colab": {
"provenance": [],
"include_colab_link": true
}
},
"nbformat": 4,
"nbformat_minor": 0
}