{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "aHrUgy400Wv3" }, "source": [ "# Video 2.5: Nonsquare matrices as transformations between dimensions (3Blue1Brown)" ] }, { "cell_type": "markdown", "metadata": { "id": "64IBGIMm0Wv6" }, "source": [ "## Video" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 449 }, "id": "ve_t1MZi0Wv7", "outputId": "010c6e45-560c-442d-d015-333bd28dc071", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Video available at https://youtube.com/watch?v=v8VSDg_WQlA\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ], "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAgICAgICAgICAgGBwgIBwcHBwgICAkICAgICAgICAgIChALCAgOCggIDRYNDxESExMTCAsWGBYSGhATExIBBQUFBwYHBQgIBRIIBQgSEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEv/AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAwEBAQEAAAAAAAAAAAAABgcIBQQDAv/EAEsQAAEEAQMDAAUJBAgCBwkAAAABAgMEBQYREgcTIQgUIjF1CRUzNjdBUbK1IzJhsxckQnFzdrTTgZVDU1VWV3SUFhhEUmOCkbHB/8QAFAEBAAAAAAAAAAAAAAAAAAAAAP/EABQRAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhEDEQA/AMZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALO6Hae01l7VXGZRc5HfyFx0UU+NloJTZCsbXMWRliF0qyIrZd+K+7jsnvOt6SnRuPTTsffxdmXI4HO1o5KOQk4OckqxpJ2pJImNjVJI1SVi7N5N7ibL21VQpsEr6cM08+d7NQvy0UMixNgnw/qrli3c5JX2I7LVWRiIrFRGefDvC+EJH1407pnD3LOLw0+ZtXsZedWu2Mh6klJe02RliOBsLEldI2ZGN5O2T2JPC+yoFYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdGjhLU9W3dii5VsYtdtyXnG3trae+OunBzke/k5j09lF2287Ac4AAAC1OvvSFulW4dzcxVyvz5Uks/1WNI+z20gVHIqTP71Z/eXhL7PLtSeymwFVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsL0b/rXhP/ADyfypC4vRU1RT1FibnT3OvXs3Y5JsBaXbnXnYvfWCJ26LzZIizsRfDk9YY5dnNYtO+jf9a8J/55P5UhBsXemqzw2a8jobFSaOevNGuz45oXpJFIxfuc17Wqi/igHS13pe5hclbxV9iR28dMsUyNVVY7wj45Y3KiK6KSNzJGqqJu17V2Q7fXz616l/zFlv8AXzmgOrtKHqHpKDVtCNiZ/TMC1tQU4W8Vlhiakkz2Md5VjEc6xHsq+xJYZu97ERKG611+9rDUEXJGd7U+Tj5u/dbzyMzeTv4Jvv8A8APPpvp3YsY9MvdtVMPiXzLBBeyPrCutysXaWPH1asMk9tWeUV6NSNqoqK9qou30ynTiZaNnKYq7UzePx7mpfkotsxWqSPROElyjchjlZA5eSJNH3I/YciuRUVEtb0/K7aWZwuJrIsWPw+mqrKVZP3I+Vq3E96fi9zK0CKv39pDlegjLvq6Os5rZIMnisjUuRPajo5K7oUmdHI1fDmK+CPdF8KBB+j/SmzqeTsU8phalp0ro4aOTvTQWp+EXec+vDFXkWViN5eU8+w7x4PxmOmEuPmlhy2VxWLdHatV4PWnZGZ9ltSxLVktQwUKM00dN0sL0bJMyPmjXK1HcV2nHQLEx0Op9ahCqrDjs9l6kKqu6rHWjvwxqq/evFieSC+kTfls6t1HJM7k6POX6zV920NOw+pXYn8GwwRt/+0Dn9T+n2R07Zir3khkZcrR26N6lN36VyrIm7J602yK5n8HI1ybou2zmqvoo6CSOpUu5bJVMRDlY3zY+GxFbs3bNeN/a9aZVqQv7NVZEe1r5nR8+29WI9EVS2fSw+rHTVfvXTb03+/ZtTD7J/cm578Ra0Tq7FYWpn8jY03ntPYmtio7D2L6nao128qkrnSMWLjwk5+XROVZ3+Xt4qgU5qXpu+phkz0GSx+Qx0mVjxkL6brKTLO+vZsuSevZgjkrOYyBu7XJ57zVarm+0vw6f9Ncjma9q9G6tSxeM2S9mcpOtXHwPdx4Q91GufNO5XxokUTHu3ljTb2272F1k6VZDTuBR9DKUs/pnK5OpZXJ0ETeG/UgvVokeyOaSNkL2W5mq9r3bvijavBUaj5d6XsCYjS+h8DUVGUn0Zb1ntps2xcbBUX1h239pX3Lb/v8Ap0/BAKWr9M7FpYPmq/jsyye9VoSyY912Nak92aOvVdbgyNSCwytJLK1iTtjdGjla1XNc5rV8uK0E+bL3cPNk8Rj5cZNaglu5S4+rRkkq2UrPZFMsKuVXOVXIjmt9ljlXbbYnPoSW5ItcYdkb3Nbabfhnai+JI0x1qZGPT+01JIYn/wB8bV+4gHWH6xZ/49lf9dOB7es3TO/pTIsxmRmqTTy047aPoSTSRJHLJNG1qunhjdz3hdunHbZU8/h39V9DL9DBTahZlsDkcdWnjrvdib9i1J3pJI4uHmq2NHIsjFVFei7Ki7Lum84+UM+tdX/L9L/U3j8aP+x/UH+b4f5WEAo7SOm58nLJHE+CCKrAti7duTdmpVrteyJZp5NlXZZJYo2sY1z3vlYxjXOciLMcP0ldlGTpgMtj83cowLPPi68V+pdkiYrUkkox360bbrW7qqtRySe7Ziq5EXveilmdSV7eTr6eo0bfzjj+3kp8o3jSpVmq/a1POsjGxsaj5FVruXNEXZrtiT+jDp3D4/WeEbDqBuSvsnuRrFi8ZO7H8vULjJU+cbksL3xceez44Ho7xt4XkgUHpfD+vXIai2qdHvq9Ft5KZ1epFwje/eaVrHKxF4cU9lfac1PvLH1n0EyeJ9Vlt5LCrQu0fX/niC3bmx8VdysbXV0rancnlnWRO3HAyVz0bI5E4se5sU63xtZqfUbGojWs1FmGtaibIjW5CwiIifcmyFzeldekbpLpzWa7aGbT8c8rE2/aSQ0cdHA533rwbYsIn+O/8QKi6vdLsppjJRYu+kM1i3Xhs1nUXSTMmjmkkiYjEfG2Tu9yJ7FYrUXdE23RUVffluljca9tbN5vGYjIywxypjJmZC5YrpM3nEmSdj6ssdJzmLG/hyfIjZGqrE3TecehnC/N61oTZWzPefiaU9mst2Z9l3KqxI6rEdOrnIyJ0/daiKnF0TVQj3VXH4O5nczZtajtNsWMtefNGuBml7bvWZE7LZPXPaYxERibIibMTZE9wEF6jaIv4C4lO+yPlLCyzVs15Wz1LdWXfs2qk7fEsD0Rdl8L4VFRFTYjRdHWrW+GyGm9M4qrZs3sjpj1qu+7LSWnE+jMqLFG1jpnqrmtirM8/wDVvVNuWxS4E46S9N5tSTrVrZPDUbCyxRQV8tdkrS2Xyo9UbVZHBIsypw2VPfu9qJvuezUPSixjLNmvlsnisa2rbkqxWLDshK24+FysnlpQU6Utl9Vj2uYs74mRq9j2I5zmPa3x9AfrXpr/ADDiv9dAST0xLkk2tc53HKqQTwQxN39lkbKsGzWN9zUVyucu3vc96+9VUDlaj6NZajPVbLJQfRyND5yr5yO3tiVoI6Bj7LrEzGSMRr7NZnbViSOfYha1jnSMa75/0UWZ8Xey2LyOMzVbC8HZSPHLkI7VWJ6OVLElbI0oHvrbMd7bOWyMeqoiNdtbPW+/K3phoiBHqkdieZ0qb/vdj1lI2r+LU577e7drV+5Dx+haxH0tcxuTkyTSlhHsXy1yLFaaqKn3+HKn/FQM+6fxFm/agpU4XT2rkrYoIWbIrnuXxu5yo1jU8qrnKjWoiqqoiKpOsL0xq3bMeOq6mwkuUnlWGGpxybKs0+6o2tDkn00ryTOcnFq7pG9zmo2R3Ju/O6EZfK0dRYuzhKbb+UjnkZUpPjdIyZZq80EqPRjmqxqQySuWRXIjEarlVEapMOqGErw5i9kM9qGlWzc191qzjdLY6XJeqWlej3RPmlngrRWI5UcjmJPI5HMXk5XKoFXZjTtulkJMZei9SuV7KV7EdtUjbC9XInOSTy3s7OR/cRVarVRyKqKimlsN0jp1+n2SdHnsJJZzOYoJbyK3ZW4qu2ir3QUks9lXPn/rEjlcjERVla3yjEc6M/KCQtbrBVa1EWXEUXyKibK5yOnjRzvxXixif3NQ9eP+x21/mpv/AO6wFK57SDamQqUEy2Htpd7G+QpXZJcfX787oP63O6FrouHHuO2auzHNXz7ib6i6AZOnVpX/AJ0wNvH5JJ3pkqOQnlp169VUbPZtTuqtakTZHMi4s5vdK9kbWue5GrU8lSVscczopGwzukbDM5jkjkdFw7rY3qnF7m9xm6Ivjm3f3oaN6hXpI+kWkYWKrW28zkEm4rsr447+YkSJ23vjWRI37e7lCxfuQCuNZdGchiZsI25exUdXVNZbOOyj7FmGk2JscUrvWvWazJ6zkZPAuzov+manvRyN83V7pJf0zBirNq5jLsGoIp5qM2JszWY3RV21nK9z5YI2q1yWo1arVdvs73eN4Vksxbssrx2bVmxHRi7NSOxYllZXhTbaKu2RypDH4T2W7J4L89KH6o9NPgt/+VhwKj6fdPMhmmWrEC16uPxbEkyOXyMy18fVa79xssqNc+SV7tmtiiY96q5uzfJ7penkVhkzsNmsfmZakEliajBDkKd10MLHSTy1Yb9aNttjI2OerY3rJxa5e3s1VLj600mYvpfpGpU3ZHmrbclkHs9lZ55a0s/GZW7dxG92NqI7fxVi/wDkQp3o91XyelnX342Om92WqeqzLdgfNwaiuVskKskYrZEVzvDuTV8btXZNg4/T7RGQzth9ejHHxrQPs3blmVlelSqRJvLauWZPYggY1FVV967Lsir4JJh+lKZN0lfB5rGZjIV68k7sZBHkak9hsKNWVMc69Ujjuua3m7hyY9WsVWtdsu1x9NsNRrdJ8tZktPou1BlYor+QgrLYmZBXtwRQ1VZG9jnwrwl8K7/42X3o7YrHpda09g8zjcvHqK3IuLuxTvibp+VjpYUdxsQo9bio1XwukZuqLtzAgmjtHWsm625joalXEwLYyeRvukiqU4uaRM7zo43yvmklc2NkMbHyPc7ZrV2dtK9HdKIM3dhoYjUOLs2ZUe58ViDI0n9uJiySyV/WKvG1xY1y9tHJIqJvx4te5thaa6i6Uny+s6mRguxaY11ZqyrkIYntsUbcEs9yGV0UaPVqOnlsvRER/wBCxFjc1Xond090Opx2W5jQeq8fmchiP65Xw1vtNsyNYio5j3RzNcnNHcNnxRtVXbK9u+6BlIH7micxzmPa5j43K17HtVrmuauzmuavlrkVFTZfwPwAAAAAAAAAAAAAAAAAAAAAAXH6MOEx7MrRzOSz2JxlXG25FfVtWJEyEisg9h0UCRcOy50qJzc9P3H+F28wPqFpSLFTsjgy+Ly8U3cdHPip5ZEaxjtmpYZLE1YZXIqLxRXJ4XyvvWMAC0fRn6pyaUzcVp6udjbyNq5euiuVHVnPTaw2NN0fPCu72+N1RZGIqdxVIz1jvw2tR5+1XkbNXt53KT15o13ZJDLdnfFIxfvY5jmqi/gqEUAF9dRtSU9d0MXakv06GqMJR9QvwZWdlOtla0TlfDZqZCZW1YLKSSSq6GZ0aKth6tdtH7TpFlqWhUuZqzdx+Qz09CWnhsRjLcOShryTqncu5G7Te6sxjEY1Eijle96SPT2f3m0KALt9Fp1aPUVTUWVzeLpR0b1mS3HkLUjL1h89WZFmhibErZGrJOm7lc3yj/w88vrBpetb1LbnrZ/ATVtS5fL3YbTL83ZpxPmfbjTIuWvvA97ZkY3ij0V7HJvt5WpgBp70iYcXktO6WrUtSYCexo3Bz170CXZkfYlbVoojMenY/bq51OVqI/tqquj8eV4xDqxhcVmIsDLiMri/nOppPA1szSuXa+PY6xBQgia6C/ceypNPHGjYpYnSNcxYo0RHrzSOkABb8uXjwWk8rgZL9W9d1Rex07qWPtsu1cbXoPdNJYkuVnOqyXLEjII+3E92zIEc5yey1e/Lq7H6u0rjMFfuVsZn9I/s8PbyD+zj7+PWNkbqj7e3ClZSOGBEWXZjlrR+0ncd26BAGk/Q+0pWx+rcTJev05b8q3mY7HYm/UySIqY646a1et0pJK0UCQtka2NsiyufIxVa1rXKtLdYfrFn/j2V/wBdOT/0S7GMxmdo5/KZrH0IMZNdjfSmbekvS97HywMliZBVfD2edrbd0iO/Yv8AZ9yrEet9KomWu3qWWx+TgzOTyNuJKHriSwRS2VmibbZbrRIyRzZk8MV6bxv8+EVQs30kbVfWdzGZ3E5DEtR+GrVL9DI5ihi7lO3DLYkla+LJTRJPBtO1GviV+6sd4TxvKdNw4Gfp5kdM1tQ4OtkEzTJZrORvJTr3J4/ULE01dj2LYWq1n9WZKse0jqbneyjvZycANEdC9S4qHTurNJWMlUxuSzUrko5iV7kx9psLWs9WkuNZ+xru7UqI96IituO28+yvA6IJS0nnsfmc1eovbTsOjgp4nI1ctK71hvqs1yeTGPmhgqww2JpeDnpLI+KNrY1RznspYAXv1XxWLnv5ivXzmDnm1bqp+Zq322XLUo46KLMT8L1tIVWCeaTIxs7LeS8qiK7ZFYqy3r3QxeYwuk6dLVGnHT6UwrqV5st+eNssqVqLN6jvVl7jVdVkT2+C+0zx5XbLYAlPSfW1nTuYo5iq1JJKEqq+Bzla2aCRjop4HORF484nvRHbLxVWu2XYnfVXTGOzmRsZvT2VxaVc1Zdbs4zL5SliMhj7VhVltRyR5GaOKzAkrnK19d8n7/FEXjydTYAmOtm4ynTq4ylJXv3IbE9nKZmBkiROke2OKHH0Xyta+WpCkb3ulVqJJJOvHdrGvfDgALN9HPF1lzWOydvL4rGV8HlsfbmZkrMkU88cM6TuSpGyJySO2h4rurURZGEj9I/C0snqazkqOfwM9XP5CNkTkvSo6q31aNrpbzextDAjo3Jyarve3x58UeANTdVKmKvaM05hK2p9Ovvaa9Ykto6/M2KXm2V3Cq/1feR+6o3ZyN3VTzeit814mhnZMhqLB1n6mwLqdWs65KtiCWVs7f66xIdoeKvbujVcvlTMQAv/ANGTUeL0dqyX50v0rNa1ipaceXxbn3KleaxJWnZIrljbJsiQvicqMVWrIm/s8lITY0BBUvST5PNYi1i68yzS2sbmad65kY0cj+zVpV5nW4rU3lvKwyNjFcquciJutbADUnpA6wweVsWdTQ5ChYZl9INxdfEKqyZSvlZZtn96use1eOGN0j++rkRVj2Zy5NVYr021HRyOhMxpOS5Vo5SPJx5XFrkbEVKpcjT1fu1kuzuSGGynal27rmI7uxbLsj3NoUAWJrCOD1bT2nmXaLp6ctqXIXmWmy46tay9iuztLdhR0csUFerWfJNEr2I6SVGq7hutwawxeLt6H09pyLVWmUyGCyFyzZc/IWG1Xx2rF+VqQzeq8nPalqJFRzUTdH7Kuyb5bAHVw2GSzebSW5Sro+WSP163O6Oi3to9e46ZGKqRu4+F4+eTfHk0L6QMGLyGmdLVKWo8BPZ0bibcV6Bl2buWJJIaHFmPRYP27t6kibP4KvJn4rtmUAXvo7W2Pz2k26OzNyPG28Ta9c03mLXcWkqqsvKhkJGI59dipYnRsuysRqs327TUkh+F0pUxE6ZDNXMTbgx8vcr4nG5WjlZcpNGvKCB/qEksdTHveje6+ZzHdvuIxrnq1pXAAubor1EoNw2Y0jnpH18TqBUsVcnFE6b5uyUaxPimlgi9uSo59eurms8p21TbaRzmxtvTaKvM5+RzuCZjYHNWS5jcvUydixHum7aONrPW2s7kXZEnjhai+XuYiKqV6ALs0vkdPZPGaxgszVMAmVyuBl03XcySaOvLX+eGM7zYGrJ2ErSOjlso1Ua60juKq5sbvL0hw6adzVPOZHL4qvUwk62VTGZrHZS9dRrXtSnUqY6eSRFnR3bV0yRMayV6ucm2xToA6Wqcst+9dvOYkbsjds23RNXdrFsTPmVjV2TdEV+2+33HNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdjTOlsnlHSNxuOv5F1dGumbj6Vi26Nr1VGLIldjlYiq12yr79lA44Jn/RPqr/ALtag/5Fkf8AYOLqbSmUxfaTJ43IY5bPPsJkKNip3e3x7na9YY3ucebN9t9ubd/egHGAAAAAAAAAAAAAAAAAAAHtwmJtXp46tKtYuWp+Xaq04JLE8nBjpH9uGJqvfsxj3LsnhGqv3Em/on1V/wB2tQf8iyP+wBDASTPaBzuPgdZv4XLUqzHNa6zdxdytA1z14sa6WaJrEVV8Im/kjYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWfycsjmT6me1dnMxtRzV2RdnNfZVF2XwvlDJhrD5Oz6XVHwut+a0BX6elbrj/tSFf4/NeO/wD5AQbqp1Vzep1qrmbTLK45JkrKyrXr8EsdpZd+wxvPfsx+/fbbx71IQAAAA9mHxdm7OytTrz27MyqkVarDJPPIqIrlRkUTVe9dkVfCfcpKc/0n1NQrutXMFk4a0bFfLO6nK6OJjU5OdO5iL2GonvV/EtTp4mAg6eZWaPUC4vUMlmZ01avZhhu3GRrEypjli4+tTY57XK9e05G85Xq9XJFxbE/RAz12lq/DsqSyNZkbSVbsDHuSOatIx6PSZiLs9GfSJv7ljRQKiBdvps6aoYvV1qPHsZFHcq1rs9aJGtjgszo9JWxsansI/g2bj+M7ttk2RKSAAAAAAPpWgfK9kcbHSSSvayOONqve971RrWMa3y5yqqIiJ5VVPTncTZo2ZqdyCStaqv7c9eZvGSN6Ii8XNX3Lsqf/AJNH+it1Kfc1ZhKEGF09i4p3W22JsXiUbblZHjrcrWOuW5Jpo2rJHG5e25m6sRF8botY+lV9c9Q/Enfy4wKxAAHc0Jqq7hMhXymOlbDdpd3sSuijmRvehkrybxytVjt45Xp5Txvv9xan/vW63/7Uh/5Xj/8AYKPAGzupurr+d6RR5PJzJPctZNqSythihRUhys0MaJHC1rE2YxqeE87eTGJrC/8AYnV+KO/WrBk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrD5Oz6XVHwut+a0ZPNYfJ2fS6o+F1vzWgMngAAAAPVia8cs8MU07KsUsrGS2pGSyMhjc5EdK6OBrpHo1N14tRVXY0z6NuAw2Otz5HBZOtqrU9WtKmHwkkc+Diar43tsWo5si1PXpmwrJtCziqN7iqqbo9kA1V0Av4/SVTVkl2q+K3HUnfQa16SR17zmtrPbKvsyy/tIlczZOPJ3l3HzA+kl+arn8LYgc5s0OYoOZwVUVf61EisXb3tciq1U9yo5UX3gfHqVlMndy1+1mUlZk57T1vRzxOhkjlbsxIe0/zE1jWtY1n3NY1PuI6az+UkwVWHJYXIRMa21k6lyG4rURFkbSfW9WkeifvP2syM5L54xMT3NTbJgAAAAABcPoX/XnA/4l/wDS7xzPSq+ueofiTv5cZ0/Qv+vOB/xL/wCl3jmelV9c9Q/Enfy4wKxAAAAAawv/AGJ1fijv1qwZPNYX/sTq/FHfrVgyeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1h8nZ9Lqj4XW/NaMnmsPk7PpdUfC635rQGTwAAAAFt4rWlDN4ajgNQZC/jfmRzkxOTgbNex/Zdzc2HJ4xsiOWSPnIyOzAivRk3BzHIxFOr0sxOksDka+Zy2o62Vbi5m3MdisHRybp7M8LkkrLYku1oI6vGRGO7Tne0rURV23RaPAFg9e+qNvVuXfkbDOxDHGlehSa/m2vWa5zkartk7krnOc5z9k3V2ybI1qJXwAAAAAABfHQ/PaL03l6Wakyedu2KDJHMqxYSrXhSWerJXkR0jr7nSMakz9tkbuqN/ih4OtmV0dnMhlMzUyebr2sgktiOjZw1Z8LrSQ7RxLZjvI6GJ72tTlwcrUcv72xSwAAAAAANYX/sTq/FHfrVgyeawv/YnV+KO/WrBk8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrD5Oz6XVHwut+a0ZPNYfJ2fS6o+F1vzWgMngAAAAAB3tBaQyGdvw43F11s27CPVsfJkbWsjar5JJJZFRkcbWovlVTzsibqqIocEAAAAAAAAHoxtGezNHXrQy2J7D0ZDBXjfLNI93hrI440Vz3r+CJuerU2Dt4y5YoXoVr26UixWIHOY9WPREVWq6Nytd4VPKKqeQOaAAAAA1hf+xOr8Ud+tWDJ5rC/9idX4o79asGTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGsPk7PpdUfC635rRk81h8nZ9Lqj4XW/NaAyeAAAAAG2fQbwdfEZKxj5YWOzVzAfOWTle3aXH15p6fzfik3Xds74pHWpkVE2WSmxU5ROMy9LcdBVisajyETJamEkZHj6k0bnRZHNvaslOo5u6JJVhRvrMyb/uRsjX6dpdvye2Qmt6oztqzI6axcxFixYmf5fJNNkKsksjlT+057nKv94GUwAAAAAAAac9FTqnkLurcNj46uHxtO0tpluHD4WjRdZSHHWpY1nnjjWd+z42u2R6Iqp5RSsfSq+ueofiTv5cZ0/Qv+vOB/xL/wCl3jmelV9c9Q/Enfy4wKxAAAAAawv/AGJ1fijv1qwZPNYX/sTq/FHfrVgyeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1h8nZ9Lqj4XW/NaMnmsPk7PpdUfC635rQGTwAAAAF16iyeir1XGVFyeoalXDU0igqQ4WnK31mfjLkLkkr8iiy2J50VVdxaiMjgYibRoXX6CuL08zLZSbDX8rbkZikinjyWNrVI2xy2YntfG+G3Krn7w7cVRE2d7zFJproJ1e0Vo+W3PTr6otzZGCKGb1uPFJGxsblevbbFOi7q5feqr4RPAFJa1p6djgidh72WtWHSbTx5LG1qcbYuCryY+C3Krn8+KcdttlXz48xIl+v00zxiXALneayP9Ybm24/ikWydvtPpO3dJvvvu1E92xEAAAAAAC4fQv+vOB/wAS/wDpd45npVfXPUPxJ38uMlPR3WehtO5OjmGR6rs3ceyRWxSR4htVZZ60laVVRsvcfGiTSK32mrujd9/KL4usOqdE5y5k8tEzVFfI5Jss0UL2Yp1FLnZ4xc1SVZmV1kaxXbK5yIrtvuQClQAAAAGsL/2J1fijv1qyZPNYX/sTq/FHfrVgyeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1h8nZ9Lqj4XW/NaMnmsPk7PpdUfC635rQGTwAAAAAAAAAAAAAAAAAAAAAAAawv/YnV+KO/WrBk81hf+xOr8Ud+tWDJ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWHydn0uqPhdb81oyeaw+Ts+l1R8LrfmtAZPAAAAASvQvTrNZyG7NiKEt9uJ7C3GV3RumYlnv9nhArkkn39Xl8RtcqcU/FD14/pJqmeVIY9O5ruOdx/aYq3Cxq//AFJJo2sjT+LlRCb9AOoGR01gdSZPGOibYTKabgcliFJonxSx59Xsc1VRU8sYu7VRfZ9/vPprb0qNX5Ou6sluvjo5Wq2V2KrrBM9qpsqJYlkkli/vjc1f4gVDqnBWcZcsULjY2WqMixWY4rEFhscqIiviWWu98ayMVVa5EcvFzXNXZUVDmAAAAAAJ10C0dHn9S4jEzLtBdtK60iKqK6tWikt2Y2uaqKxz4oJGI5F8K9F87bAfDS3THMZGn84xwQ1sasvaTKZW9TxlF0m7m8YrF+aNs7uTXN2j5bKiovuU8ettA5bDNry36vGtfbzpX608FyhZb5817tOR8Eq7JvxR3JEVN0Qs704czJJqqbFsRsWP01TpUcZThTt14In069mTtQN9iNVdKjN2om7IIU9zERJR6G2PbqLFap0lcdzrWacV/HJJ5SneY58XrUP3td3HVFVEXZUiVPc524ZiB+5onMc5j2qx8bla9jkVHNc1dnNci+UVFRU2PwAAAGsL/wBidX4o79asGTzWF/7E6vxR361YMngAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANYfJ2fS6o+F1vzWjJ5rD5Oz6XVHwut+a0Bk8AAAABY/TTVmJoYXOVcjUfkJ713DWMdQV8kVSWWlHl2Pkvywq2X1WNbkTu3G9j5HcG8mt5qnZ6ba5o5LK1sdncJhJMVl7MNN/zdiKmLt0FmekUVmrfosZYdwkdG5zZnyo5rXJt5PTrHp9pilorFZZmWkfqLKpHYTH96F7HwPs2K8rUrMZ3IYoVqzN7znbLJFI33ua1lWaMrvmyWPiiRVkmyFSOJE96vfPG1iJ/HdUAlfpBdNZdKZyxi3PdNArGWsfYejUfNTmV6RuejfCSNfHLE7wiK6FyoiIqFfGrflJL0D8zh67FRbFfFyyT7J5SOey5IGqv47wzLt9yORfvQykAAAAn3o86vhwOp8PlbHivUtOZZciKvCvaglpzS8Woqu4R2Hv2RN14bIQE+tSvJNJHDDG+WWd7Y4oomOfJJI9yNZHGxqK573OVERE8qqoBdvpw4mWHWFy7sjqmcrULuPsxu5xTQpSr1nuZI32XbSQP9yr7LmL/aQsr5N7DK29lchIqMSxSWrSa5URbCQz1pb74m+9zYFmx6OX3ItyNPx2pHIan1PpxrMFl6rHwVkSxWxOosZWyEUCSps2aituNzoI12em0L0Yru4ioq8i8PQ41TOn/tLqzMSN9U09hY6NZIoIKlWKJ0jrj6VCtXYyCDd8EH7ONqcn2WKu6v3UM0dWY2s1BnGt24szmTa3b3cUuzom38NiMHpyt6SzPPZmXlLbmknldttvJK90j12+7dzlPMAAAGsL/2J1fijv1qwZPNYX/sTq/FHfrVgyeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1h8nZ9Lqj4XW/NaMnmsPk7PpdUfC635rQGTwAAAAE+0hq7HSY9uF1BXtz0K00tjGX8a6L5xxss6N78cUVhUitUpXMjc6BzmbORz2uRVXeV6Fz+jtMWWZWu/JamylRUlxkNrHQ4jG1rCbcLFne1PNPNGvtsRqcd2+9FRrkpYAdzXmqrubyNrKZCXu278nOVyJxY1EajI4o2/2ImMaxjU87I1PK+84YAAAADoaay82Pu079fj38bbr26/NFczvVpWTR8moqKreTG7puhzwBevVLWWnNXX0zOVzGboTMrRQuxDcJSvJHHG6SV1XH34rddroucsvF88SORX7uVxGepXU6GxjK+nMBVlxmnacqzyRzyMkyGUuLtvdyssSIxzk4t2hZ7DVa33oyJI6wAAAAAABrC/8AYnV+KO/WrBk81hf+xOr8Ud+tWDJ4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6PRa6x1NITZOS3RnvMyteCFrIJI2ce0+Vzufc8ORUk2/4KUuANX/ANP/AE//APD6l/6DE/7JUvpB6+wGddj1wWn4cElJtpLaQQVIfWVmWv2Vd6qxvLh25f3v+tXb7yqgAAAAAAAAAAAAAAAAAAAEr6SZ/H4vM072Ux7MpQqrP6xjpGRSMn7laaKPdk6LG7jLJG/yn/R/jsaE/p/6f/8Ah9S/9Bif9kygANJdavSCwmY01Jp7E4GTExOswzRMi9Vjqx9ufvycYa7URFc5XL4T3uVTNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/9k=\n" }, "metadata": {}, "execution_count": 5 } ], "source": [ "# @markdown\n", "from IPython.display import YouTubeVideo\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(YouTubeVideo(id=f\"v8VSDg_WQlA\", width=730, height=410, fs=1))\n", "display(out)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.13 ('mathtools')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3" } }, "colab": { "provenance": [], "include_colab_link": true } }, "nbformat": 4, "nbformat_minor": 0 }