{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aHrUgy400Wv3"
},
"source": [
"# Video 3.2: Discrete Dynamical Neural Circuit"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "64IBGIMm0Wv6"
},
"source": [
"## Video"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "ve_t1MZi0Wv7",
"outputId": "72fc4510-7926-4f19-ac3a-44918601a566",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 449
},
"tags": [
"remove-input"
]
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Video available at https://youtube.com/watch?v=vN05gWmdAt8\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
" \n",
" "
],
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhwaGRodHRsfIjQlIyEhGDEqMSUqLjIzMC0qNDg1SFBCNj9LPSstRGFFS1NWW1xbMkFlbWRYbFBZW1cBERISGBYZMBsbL1c/N0JiYmRXV11XV1dXV1dYV1dXV1dXV1dkV1dXV1dXXVdXV1dXV1dXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAwEBAQEAAAAAAAAAAAAAAQQFAgMGB//EAEAQAAIBAgIHBgUDAQgCAQUAAAABAgMRBBITFSExUVKRBUFTcaGiFCJhktEygbEjJDM0QnJzwfAlQ2IGRYKy4f/EABkBAQEBAQEBAAAAAAAAAAAAAAABAgMFBP/EAB4RAQACAwEBAQEBAAAAAAAAAAABEQISE1EhMUFC/9oADAMBAAIRAxEAPwD8/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfXYuJ8P3x/JOpMT4fvj+Qx0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsM8GhqTE+H74/kakxPh++P5B0w9hng0NSYnw/fH8jUmJ8P3x/IOmHsPrYfpXkiTmE1lW1bl3k51xXUrzJSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoEgjOuK6jOuK6gSCM64rqM64rqBIIzriuozriuoHjT7CqZV80Ny4nWoqnPD1N2l+iPkv4OiOzA1FU54eo1FU54epvgIwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4AwNRVOeHqNRVOeHqb4ApUu06GWP8AUW5dz4HWs6HiLoz5aG5eRIWn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cAp9RrOh4i6MazoeIujPlwCn1Gs6HiLoxrOh4i6M+XAKfUazoeIujGs6HiLoz5cApENy8iSIbl5EhQABAAAAAAAAAGji+ytHQhWU810nKNv05lsf8AwefZfZ/xE2nLJFLbK19rdkv3DWs3SkD1q0WqkoK8nGTWxb7O245jSk5KNmpN2s0EcAv0uz2sXGhUvbPlbXf5Mq1qTjKVk8qk0nbZsdt4KeQOoQctkU35K5Ci72s78LAQDpwaSbTSe523+REoOO9NeasBAOtHK2bLLLxyu3U9o4Kbouql8qlltZ3ey9/IFK4PerSjGnB3lpG3mi4WSS3WfeeThK2bK8vGzt1A5B0qcmrqMmuOV2LOFw0Z0K83e9NRcdvF2YIhUB7YaFOUnpZuEbb1DNt4F6v2fh6cYSliJ/PHNH+jvXXYFiLZYOtHK2bLLLxyu3UiMW3ZJt8ErhEA9KdP+pGMk1eSTTVntZ7Y/DKGIqU4JtRlZLewUqgmUWnZpp8GjQwODg6M61WNSSjJRjGGxu/eCItnA7VNybyRk19Fey+tjlJvcrgQCZQa3pq+66tc0ML2U6uHlVjL5k3aFt9trBETLOBZo4XNQq1b20birW35nY8I05O7UW0t9ot2A5BKTe5Xt9BZ2vbZxsBAOtHLb8r2b/lewKnJq6jK3HK7dQOQTGLk7RTb4JXGV3tZ34WAgHtSpLSRjUzQTe35HdL6LvOJQ+dxheSu0vl2teQHAJcWnZpp8GtpOjlZvLKy3vK9gHIJjFt2SbfBK4s72s78LAQDqcHHZJNP6qxyAAAQAAAAARDcvIkiG5eRIUAAQAAAAAAAB9GppzpUZfprYaMfKW1xZ44aDw/w1F7KlSsp1Pok7RX/ACZNXFzk4NvbTSUWlayW46qY6pKsq0mnUTTWzZs3bA6bQvU41FPFTVbQ01UtOSjdtuTslbae2NrNLB1I1JSk7x0mXK5K6W0zKPaFSDm1laqO84ygnFu9937kYrHVKuXO18l8to2tfy8gbRTVq15y7TjCUm4xq/LFvds7hhcZUq1sRTnK9PRz+S2xZd1jOqdq1ZThN5M8HdSVNJt2tt4njRxc4TlOLWaSaezulvBs1KM408FRarSoucpOUoU8zk07JN3VrHphcTTq46lKDcno2pycMuaSi9tjKw2PqUoOCyyg3fLOCkr8dpK7RqaVVVlUkrK0EklutZeYIyj40cD2lVnSxMpSUnCKlBOKtF3tsXceGJqzrYKEptzmq7im99nG9upn0sRKEZxja1RWls7k7j4iWi0V/kz59229rbwm3x9DhHNYnRVcS5yytSpKm8q2Xtfd6FGhi6sMBJxqSTjVUU090bbiuu2q983yZu+WjV5Lg33njhcfUpRlGOVxk7uMoKSuu/aF2hozm61HBaWTlmqyTbe9ZkV+0u0KyrVqeZqF5QyW2KK2LZ5bblKeKnKEIN/LBtxstqb2ssVe1q04uLcLtZXLRrM1wbBs1MHKpTrUYVcS1JpWoxptrK1sTe4p0opUsclsSaSX/wCbPCHbFZZbOGaKspumnKy7r8CusXO1RXVqu2Wz632cAbQ8DYxMFJ4CMv0uEU/LMY57VsTOagpP+7jljZWsgzE02I46t8forvJpMmjt8uXdu8tp5yegw9edF2fxDhmW+MFtSuVH2zXtvhmtbPo1nt5njhcdUpZlFpxl+qMo5k/NMNbQ0J1JVcNh6lTbUVfKpPe47/32ndTFwp4vFKUpQzvKqkVdwMzEY6pUlFya+T9MVGyj5I6j2lUU5zahJ1HeSlTTTfkwbOu1KVSNSLqVNLminGfNHuLWHxdWOAqOM5JxqRjGz3JrcZ2KxM6ss03d2srKySXcl3ERxMlSdLZklJSezvQS/s00+0sVUw6owoycIaKMvl/zSd7t8S6ko9oNqKTdBylG2zNbaY9DtWrCEYfJJR/TnpqTj5X3HlDHVI1JVc15yTTbV9+xhdoc4nF1KzTqScmt30v3I0cPiJUcJSqR3xrv91bajIPV4iTpKlsyKWZbO97AzE/1s4zDxjhcRUp/3dXRzh9Ly2x/ZnWJrRoqhGOInRSpxlljRzKTe9t3VzHWNqaF0b/0272t9b7P3PSj2nUjBQtCcY/pz01LL5XDW0L8KsKksdKkrQlRula3C+zzKtNf+Oq/WtH+CvSx9SFV1U1nlv8AlVmn3W4bDrEdpVakHTk4qDaeWMEkrcLbt4S4aPa2LnnpUVLLTlThmS/zZkk7/sTi8bWp41UoNxhGUYxprc47O4x8TiZVZKU7XUVFWVti3FqPbNZJbYOSVlN005JeYXb6uvEUqNXE0VN0VKfy1Iq+W3+V222JpU6lKeKnOSnWhSTjPfsf+ZfsjLw+PnTUlaE1J5npIKW3jtJj2jVVV1s3ztWd1sa4W4A2hZ7PxlWriMOqknNRqKze/bv2lrC5YU8XUzunLS5c8YZnFXe5d1+JnT7TquUJfJHRvNFRgkk+Njihj6lOU5Ra+f8AUnG6lfbtX7hIyher4unU+HiqkqtSFRXnKnleVtWXfcu08bUl2jKi3/ScpRcLbGrN9fqYlbHTm4NqEcjvFQpqKv8At5COOqKvp01pLt3tsu/oF2XKVSVHA56TcZTrZZSW9JLYr9x69l1nUlWrVJfPCl8s8l2u7NbvaM7C4+pSUlHK4y3xlHMn9bM61lV0ulzWla2yKtbltwBGULWLxlOeHdN1p1p5lKEpUrZV3q92ZRaxGPnUjlcacY3u1Cmo3f1sVQzM2AAMgAAAACIbl5EkQ3LyJCgACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAIAAAAAAAAAAAAAAAAAAAAAAAAAACIbl5EkQ3LyJCgACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiG5eRJENy8iQoAAgAAAAAAAAAAAAAt9l0IVa8KdS6jLZdPvtsPXsvs9VcQ6dW6jBNyadtzt/LKNOo4SUlvi7r9je7UiqVOtWhs+IlDJ5WzP1QbxiGdhez1LFOjO6jFyzNcse/+Dwo4KpVzOlTlKKe+3T9zaxtowrYpf8AvpRjHzlsl6RPCu6awuGzKtlyvbSmklK+291vC6wx9DLPkyyz3tlttvwsemJwdWkk6lOUU9zaNrCYhVcTUnknGWgtFO2dtb2vq0UJ4qmsPVpwhXtJpt1JJqLT37FsYTWEdoYP+rShSg25Uouy23bvdmfKLTae9bD6at80MlL5cQ6EGn3yhbbGPBnzFu4GcVLWweGwtaaox02dp2qNq10r/p4GYqUnmsm8u9pblxNjsmvU0iw8qCipLLKUYOM0rb3Iz4qpCVeNFycFeM2lvgm0mwTVK9CClOMXulJLqzUr4fCRrSot1oNSy57pq/lwM3Cf3tP/AFx/lF3tLCVKuMqxhCTcp8NnncEfivicBUpzqRabVO2aS3We5/ueMaE3FyUW4ppN/V7kblTEwlj5U27wnBUZPi7b+uwrYuDoQw+Hf6s+kn5uVo+gWcYUtW17SeinaOxu262888PhKlW+jhKdt9luNp15vtVLNKym42vstl3WKVLDxVGpUqTqqmqrioU3vfF32BNYUnhaiqaNwlpOW206lgKygpulNRe55eO43JL+2YLZJf01+v8AV37/AKlTs/F1M2Llnlm0UpJ33NPYwusMzEYOrStpIShfddbzvF0UpwjCnUjmgnlltbb71buZaU3Ls+pmbdqytd33raaNP/G07fq+FWT/AFZX/wD0GsMOvga1NJzpyinsV1vfAmr2fXhHPOlOMeLW7z4HeGpV5yUb1EnNJt3sp9zf1NTDU4RlioxdeTjSmpym1lb8t9+H7hIxiWZXoxWEoTS+aUpqT42ewdm4SFTSzqZslKOZqO9/T0PTE/4HDf65/wAnhgatam3UpJ/Lsk1G6s+59AfLh1UpU6risNCpms3KMmnsXemv3K1KjKd8sXKyzO3cl3mzVqxhGhi1TVKbqNSilZSVtskhj6Cw1Ku1/wC+eWH+3bM/5sFnH+stYGto9Jo5ZLXzW7uJYrdkVY0Y1csndNyWX9CW5vzW0tWWKunpKVenS28soxXf3o8MU5PA4ZrM9tS+18e8FQqUMBWqRzQpylHil/25xTw853ywk8tr2W67svU2e0KlOHw7ar2VOLg6c0o/Xet/E5him/jqsFKnJxjse9NuzBrDNl2dXU1B0p5mrpW7jyqYecZ6OUJKfLbbtNCWInq+KzS21nHf3Wvbqe1fEThUwdVRc5qjdrve+/oEqGXiMHVpW0kJRvuuevZ2FjV0ua/yUpTVn3rceuOoQdFV6UqmSU2nCb3StvT7yexd9f8A2Jf8AiPrNAQDAAAAAAAAAAAAAAiG5eRJENy8iQoAAgAAAAAAAAAAAAAHrUxE5RjCUm4x/Sm9x5AK9JYibgqbk3CLuo32L/tz0w+Oq0k1TqSinvSZXALessTNz0jnJz5r7T0xHaFarHLUqylHg3sKwBcvV4mpmjPPLNFJRd9qS3HE5uTcm7tu7f1OQBbfaeIccjrTy2tbN/1nhTrSgpKMmlJWkl3rgeYBcpjJpprY1tRZqdp4iStKtUafdmKoBb0wziqkHNtRUk3ZbbJ9x7doYt1q86qurv5foluKoBb1+JnpNJnekvfN33OsPjatK+jqSjm32e88AC3u8ZVcozdSWaP6ZX2r/tzzhWlHNaTWZWl9U96ZwAO1VlkcMzyN3ce5td5MsRNyUnJ5opJO+1JbjzAFjEY6tVtpKkpW2q73PidVO0q8laVWbVrb+57yqAXLuVWTjGDbyxu0uF951h8VUpO9OcoN77PeeQA9cRialV3qTc3xbLHamLjVdOMG3TpwUVmW1vvf8dCkAWsz7QryhklVm4Wta/dwOaeMqwg6cZyUJb4p7HfeeABcrNDtCtTjlp1ZRjwTPP4ifz/PL5/17f1d+08gC5d6WWTJmeS+bL3X3XO1i6icGpyTgrRd/wBK4I8QB7YnF1attJOU7brvccUq0oXyyazLK7d6e9HABYAAgAAAAAAAAAAAAAiG5eRJENy8iQoAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIhuXkSRDcvIkKAAIAAAAe+BgpVqcZK6c0muKuFeAN2nTo1sRVw+ghDK5qM4N3WVva+hnYfs6dSMZZ6Uc36VOpZy8kF1UwW6XZtWdWdJRWeCu03wstnVFvBdj5qko1J02lBv5Kvf3dLbQRjMskHpXounLK5Rl9YSuupdwWJpJ04PDQm20pSk227u2zgEiGcDQxXZ7eLnQoq+35U39L2M9q1wTFANnGzo0XTj8NTmpU4ybbad3vPOrg4xrYeVGKlCttjCo9l9zi+oa1ZQLkcDOpKq/6dOMJtScp2jF3fypnNPs+pKq6UcraV21P5UuN+AZqVUF19l1M9OKlTlpG1GUal1dbWiKvZdWMoR+Vzm7ZIzvJP6ruC1KmC7W7MqQjKWanNRdpZKmbL5nvjeylTo05qdO+VuX9X9W3/LxBrLLBepdk1ZKO2nFzV4wlUtKS+iKUouLaas07NPuYSpQDXrzpUaWH/s9ObnTzScm07/scV+zo1NDPD/LGtdKMpfpkt6uGtWWD3oYOdScoKycU3K7sll3nvS7JqyhCd6cYTV1KdSy293mGalRBa+AqaZ0WlGcdrzSskuNxisBOlBTbhODds0J5lfgCpVQaMexKzttppyScU6ls11eyOX2PWytvJmiszp5/ntxsF1lQBbnB/CwlkhZ1Gs6fzN2vZ/Q9J9kVYxu3TUlHNo3U+e3kCpUAXqHZVSai1OknNXjGVVKT4bDvBU7UMYpL5oxitq3PM7gqWcD3wMFKtTjJXTmk19Ll3tzBwh/Voq1NtwaX+Wcb/yCvlssGn2jgb4yVKjDhZLcvlTbK+I7PnThpM1OcE7N055sr4ME4yqA96+EnTlCMrXnFSVn3S3HtDsqrKrOklFzpq7Wby3dQlSpAu6rnncc9G0Um5aX5Ve6tfjsOo4KVKtRz5ZRnJOMoyupK6uFqVAFrtRWxNVLnf8AJaUKeHoU5zpqrUqrMlJ/LGPdu3tgplg08NOFWtHR4empZZZoSk8j2XuuBXwnZtStDSRcFBOzlKdrbE7v6bUCvFQFyl2ZUkpPNTjGMsueVS0W+Cfecz7PqR0t8v8ASs5WlfZLc1xCVKqD2+GlotLsyZsu/bfealPs5VcW4VI06aUbuEJ2/wAt01x+oWMZlig9cRQdOWVyhJ2veEsy6nkEAAEAABENy8iSIbl5EhQABAAACz2b/iKX+5H+SsArV7R7TqKpWpxyQWeUW4wScld72emHwMdDSnCgq0p7ZylUaULPc7PZ5sxiU3uu7P6hrb19BUf9sxrT/wDRLb+0DP7A/v2tl5U5RXm1sRn3ZANvtvStQnTlknFxkluZsdm4CdOksRGnpKsv7uN1aP8A83/wjDbvvJzPi+oSJiJW1gq8q+jaarS27ZW37b36lOS3k3e+7v5kBJbnaXZ9Ws6MqcLx0UVe6SQzxWIwdGMlLRO0pJ7M0mm0vKxiZnxfUhBrZsYdVc1dRoqvSlValC/fd2fFeZ7Qw0I1MVh6TWadNZE5d++ULmEpNbm15MgGzX7MwVSjisO6kcuabsm1fYt9jjsetGOMbm182aN2+97rszMzve7vxuQE2r8bVWNalTq/2SFKLjllJN7V9LvaeWMoSnhMPOCzRhCSk1/l295luTe9t/uLu1ru3mF2fR4zNOpCrRw0K0XGLjO7umu52eyxhY2pKVacppKTk7pbkzxUmtza/cgJllbaxmBq1qWFdODklSs3dbNv1PLHVVRp0KMJKU6UnOTi7pSbulcy8z4vqQFnJv8AaThCjUrQe3FZbfRb5+pQ7U/w+F/2n/J44zF6RU4qOWNOGVK97vvf7lW4MsrfQYnDQq42Sms1qKkoZrZ5JK0bnljqbjgWnRjRbqp5FJt7ntd9xi3e+/qG297fUG362Me/7Zhv9NI7wj/8lW86n/Jh3Jv/ANuDb60qc1HBUJPcsRd+SSPTtXs6rOvVqxSdOXzqpmVrW4mRcnM7Wu7cLgtv4XBRg6EqdFVE8spVpVHaLvt3OyseM/8A7j5r/wDdmNmdrXduFxcGyx2d/iKX+5H+UaFKrF4jEYeo7U605JPlnf5ZGMAkTT6RzS7QrxeW86WWOZ2TlaOz97FLE6anQqReFhRhKyk7vbt2Wu9pkXJcm97b82FnK23isHOs8NUhZ01TgpSzJKOXfc9Zu2KxzT/9T/hHz93a13bhcXYXZodlYSE4VZaPSzhbLSUmr33vZtdi9i4ZVgk4RptVHeEZXy/Mthgptbnb9xcJGVQtdq/4mt/rf8l2th5YrD0ZUrSnSjknC6v9GY5KbW528gltjsrBzo4mCqWTlCby5k2vle/gVov/AMd519v2IoXe8i4La6w8q+CpRpLNKnOWeKe3buZOBwslDFYfY6rjFqKktttrS+u0yFJrc2vJhO21bwttbFYaVLAxjOylpruN7tXW5/UtNpdqK7teNv3dM+fuLg2d4jDTpSy1IuMrXs+B5ktt73fzZAZAAEAABENy8iSIbl5EhQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARDcvIkiG5eRIUAAQAAAAAAAAAAAAAAAAAAAAAAAFAAEAAAAAAAAAAAAudqlK6WWV5bYrK9q4riFcAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiG5eRJENy8iQoAAgAAAAAAAAAAAAAAAAAAAAA0v/p9f2lX5ZfwZ9Km5yjGKvKTSS+rL3YdSMMQnOSisslduy2omlQWGqU6rq0qijNXjCd3bvYbq4darg5SpwrqVaKbcNG0m1vSlfeeVHAR0UataroozbUFo3Ju297NyNGviKuaU4Yqgqe1xdlms+61r37irlhiMPRiqkITpXTU5Wum73QWodYLBUHDE5qsZZY7JKm3lV18648LFNYNOnVqRneNOSS+S2a/fv2FnAKmniaOlj89PLGb2RbTuTgox0eIw7qQUpOLjJy+V5e64KiVN4P+jCrm/XNwtbdbvuWcZ2VGlLRqsp1m0owUHtu7bXfZxsd4rRww1GnGrGco1W5Ze669V9SMZiox7QdVNSipp3W26SVwVEI1XBylShXUq0U7w0bSbW9KV96PPDdnRlRVapWVOGZxfyXfda23aaNfEVc0pwxVBU3dxdlms+61r37jNqVIvA043WZVm2r7Usu8ExEPF4ZaOdRVIvLPKo7nJcyR7diJPF0r7fm/4Z4RoRdKVTSRUlK2Tva4nr2PUjDE0pSaUVLa292xhmP2FztGpjFCekjak3b9Ed19m7aWMP8A4js//ZX8SM7FYK2eenoyV28qqXb29yLlHEQVfAvPG0KSUnf9Ls9j4Bv+s6lRpSc5VK2jtJpJU3Jv67CMdg9DKKUlOM4qUZJWun9C9gJQ0VTJKjGvpN9VL9H/AMb7N559t1ozdHLOM7U7NxVle77u4MzEVb17GVT4fEOir1Lwt8qfe77x2zGWhoOtFRrvNmtG3y917bLnl2bllh69N1IQlJxtmlbc9p3iKkIYaNGVVVZaRS+VtqEe9J/UNf5edLs2lUbhTxClVs2o6JpO21pO56UMLQlg88qmWWkV5aFtx+X9G/bxuaNGvCFa8auHjh7PJGKWZ/L37Lr9zLwUY1MJOlpIQnpVP55WTWWwKiHrjsNQWGotVdtpWaoO9Tb38P3Ktbs2Ua8KMZZtJlcZWtdS77fTb0PWoo1cHStUgpUs2aMpWbu7q3Et4LER+F0z/vMPGVOP1z/p6BKiZYuIpqFSUFLMotrNa17HmAGAABAAAAAAAAAAAAAAAAAAARDcvIk5g9i8ibhUgi5NwgCLk3AAi4uBIIuLgSBci4Egi5NwAIuLgSCLi4Egi4uBIFxcABcXAAXFwAFxcABcXAAXIuBIIuLgSBcXAAXFwAFxcAe7xUtCqOxQUs2xbW/qeFyLhUgi5NwgCLk3AAi4uBIFyLgSCLi4Egi5NwAIuTcACLi4EgXIuB9fSpRyx+WO5f5VwOtFHlj9qJpfoj5L+DoI40UeWP2oaKPLH7UdgDnRR5Y/aiNFHlj9qOwBxoo8sftROijyx+1HQA40UeWP2onRR5Y/ajoAcaKPLH7UNFHlj9qOwBxoo8sftQ0UeWP2o7AHOijyx+1DRR5Y/ajoAcaKPLH7UToo8sftR0AONFHlj9qJ0UeWP2o6AHGijyx+1E6KPLH7UdADnRR5Y/ahoo8sftR0AOdFHlj9qI0UeWP2o7AHOijyx+1DRR5Y/ajoAc6KPLH7UNFHlj9qOgBxoo8sftQ0UeWP2o7AHGijyx+1DRR5Y/ajsAc6KPLH7URoo8sftR2AOdFHlj9qGijyx+1HQA50UeWP2oaKPLH7UdADnRR5Y/aiNFHlj9qOwBxoo8sftQ0UeWP2o7AHOijyx+1EaKPLH7UdgDjRR5Y/ahoo8sftR2AONFHlj9qJ0UeWP2o6AHOijyx+1EaKPLH7UdgDjRR5Y/ahoo8sftR2AOdFHlj9qI0UeWP2o7AHGijyx+1DRR5Y/ajsAcaKPLH7UToo8sftR0APl4dq18q+fuX+VHWtq/P7UUYbl5Ehpd1tX5/ahravz+1FIBF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBd1tX5/ahravz+1FIAXdbV+f2oa2r8/tRSAF3W1fn9qGtq/P7UUgBENy8iTDWPq8/oh8fV5/RB345NwGH8fV5/RD4+rz+iCccm4DD+Pq8/oh8fV5/RA45NwGH8fV5/RD4+rz+iBxybgMP4+rz+iHx9Xn9EDjk3AYfx9Xn9EPj6vP6IHHJuAw/j6vP6IfH1ef0QOOTcBh/H1ef0Q+Pq8/ogccm4DD+Pq8/oh8fV5/RA45NwGH8fV5/RD4+rz+iBxybgMP4+rz+iHx9Xn9EDjk3AYfx9Xn9EPj6vP6IHHJuAw/j6vP6IfH1ef0QOOTcBh/H1ef0Q+Pq8/ogccm4DD+Pq8/oh8fV5/RA45NwGH8fV5/RD4+rz+iBxybgMP4+rz+iHx9Xn9EDjk3AYfx9Xn9EPj6vP6IHHJuAw/j6vP6IfH1ef0QOOTcBh/H1ef0Q+Pq8/ogccm4DD+Pq8/oh8fV5/RA45NwGH8fV5/RD4+rz+iBxybgMP4+rz+iHx9Xn9EDjk3AYfx9Xn9EPj6vP6IHHJuAw/j6vP6IfH1ef0QOOTcBh/H1ef0Q+Pq8/ogccm4DD+Pq8/oh8fV5/RA45NwGH8fV5/RD4+rz+iBxybgMP4+rz+iHx9Xn9EDjk3AYfx9Xn9EPj6vP6IHHJWAAfUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/2Q==\n"
},
"metadata": {},
"execution_count": 2
}
],
"source": [
"# @markdown\n",
"from IPython.display import YouTubeVideo\n",
"from ipywidgets import widgets\n",
"out = widgets.Output()\n",
"with out:\n",
" display(YouTubeVideo(id=f\"vN05gWmdAt8\", width=730, height=410, fs=1))\n",
"display(out)"
]
},
{
"cell_type": "markdown",
"source": [
"## Notes\n",
"\n",
"\n",
" Click here to download notes\n",
"\n",
"\n"
],
"metadata": {
"id": "E0u0j1aWqgMT"
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
]
},
{
"cell_type": "code",
"source": [
"# @markdown\n",
"from IPython.display import IFrame\n",
"from ipywidgets import widgets\n",
"out = widgets.Output()\n",
"with out:\n",
" display(IFrame(src=f\"https://mfr.osf.io/render?url=https://osf.io/rv247/?direct%26mode=render%26action=download%26mode=rende\", width=730, height=410))\n",
"display(out)"
],
"metadata": {
"cellView": "form",
"id": "UIcLF9gnqidd",
"outputId": "d67d0e94-b2ae-4415-a85e-ddd724715436",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"tags": [
"remove-input"
]
},
"execution_count": 1,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
" \n",
" "
]
},
"metadata": {},
"execution_count": 1
}
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('mathtools')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3"
}
},
"colab": {
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
}
},
"nbformat": 4,
"nbformat_minor": 0
}