{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "r-xn3WLqP2wM" }, "source": [ "# Video 7.3: Point Estimators Examples & Goodness" ] }, { "cell_type": "markdown", "metadata": { "id": "T9ckFFHNP2wQ" }, "source": [ "## Video" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "fTCqwicVP2wQ", "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 449 }, "outputId": "b3adb4b5-7311-419a-b199-666424c2fb58", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Video available at https://youtube.com/watch?v=3MyV1oxahC0\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ], "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4YFhsaGQ4eHRsfIjIlIiEiHzEuLSctMDIxMC4zNS84P1BCNDhLPzA3RWFFS1NWW11bN0FlbWVYbVBZW1cBERISGRYZMBsbL1c/Nz9XXldXV1ddY1dXV1dXXldXV1dXV1djV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABAUBAgYDB//EAD0QAAIBAwEFBwMEAQIFBAMBAAABAgMEERITFSGR0QUxUVJTVKFBYaIUIjJxgSPBNEJysfAzQ7LhJGJ0Bv/EABkBAQEBAAMAAAAAAAAAAAAAAAABAgMEBf/EAB8RAQACAwEBAQEBAQAAAAAAAAABEQISURQTIUExIv/aAAwDAQACEQMRAD8A+fgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsNydoe3/KPUbk7Q9v+UeoY+mPYV4LDcnaHt/yj1G5O0Pb/lHqD6Y9hXgsNydoe3/KPUbk7Q9v+UeoPpj2FeCw3J2h7f8AKPUbk7Q9v+UeoPpj2FeCw3J2h7f8o9RuTtD2/wCUeoPpj2FeCw3J2h7f8o9RuTtD2/5R6g+mPYV4LDcnaHt/yj1G5O0Pb/lHqD6Y9hXgsNydoe3/ACj1G5O0Pb/lHqD6Y9hXgsNydoe3/KPUbk7Q9v8AlHqD6Y9hXgsNydoe3/KPUbk7Q9v+UeoPpj2FeCw3J2h7f8o9RuTtD2/5R6g+mPYV4LDcnaHt/wAo9RuTtD2/5R6g+mPYV4LDcnaHt/yj1G5O0Pb/AJR6g+mPYV4LDcnaHt/yj1G5O0Pb/lHqD6Y9hXgsNydoe3/KPUbk7Q9v+UeoPpj2FeCw3J2h7f8AKPUbk7Q9v+UeoPpj2FeCw3J2h7f8o9RuTtD2/wCUeoPpj2FeCw3J2h7f8o9RuTtD2/5R6g+mPYV4LDcnaHt/yj1G5O0Pb/lHqD6Y9hXgsNydoe3/ACj1G5O0Pb/lHqD6Y9hXgsNydoe3/KPUbk7Q9v8AlHqD6Y9hXgsNydoe3/KPUbk7Q9v+UeoPpj2FeCw3J2h7f8o9RuTtD2/5R6g+mPYV4LDcnaHt/wAo9RuTtD2/5R6g+mPYV4LDcnaHt/yj1G5O0Pb/AJR6g+mPYV4LDcnaHt/yj1G5O0Pb/lHqD6Y9hXgsNydoe3/KPUbk7Q9v+UeoPpj2FeCw3J2h7f8AKPUbk7Q9v+UeoPpj2FeCw3J2h7f8o9RuTtD2/wCUeoPpj2FeCw3J2h7f8o9RuTtD2/5R6g+mPYdcDGqPmXMa4+ZcyvMZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jXHzLmBkGNcfMuY1x8y5gZBjXHzLmNcfMuYGQY1x8y5jVHzLmB57iuPVh89BuK49WHz0L8Ecyg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3FcerD56F+AKDcVx6sPnoNxXHqw+ehfgCg3FcerD56DcVx6sPnoX4AoNxXHqw+eg3DcerD56F+AIm87L3C5PoN52XuFyfQ5dAFOo3nZe4XJ9BvOy9wuT6HLgFOo3nZe4XJ9BvOy9wuT6HLgFOo3nZe4XJ9BvOy9wuT6HLgFOo3nZe4XJ9BvOy9wuT6HO2ltUrVFThjU84y/BZMXNvUpTlCaxKPeCv66Pedl7hcn0G87L3C5PoUL7PuFQ27S2efHj347iKCqdRvOy9wuT6Dedl7hcn0OahRqSUpRg2orMn4I9YWrdCdbXwjJRxjvyCnQbzsvcLk+g3nZe4XJ9DlwCnUbzsvcLk+g3nZe4XJ9DlwCnUbzsvcLk+g3nZe4XJ9DlwCnUbzsvcLk+g3nZe4XJ9DnJW9WM1CcdMnj+X37n/Ri4pOnOUHJNxeMxeU/6YKdJvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0Ofu7V0tnmeddNT7u7OeHwe1r2VWqqLjVpZl3Rc/3cgusrredl7hcn0G87L3C5PoUF1YzpJN1acsvGITyyMEmKdRvOy9wuT6Dedl7hcn0OXJFvaupTqz142UVLGO/LwCnQbzsvcLk+g3nZe4XJ9DlwCnUbzsvcLk+g3nZe4XJ9CkvLCNGK1XMXUaTdNRfBP79xCCzFOo3nZe4XJ9BvOy9wuT6HLmUm2l4hKdPvOy9wuT6Dedl7hcn0KC+sa9vJRqRSbWU08pmlzbVKTipYzKKksP6PuC06Ledl7hcn0G87L3C5PocuAlOo3nZe4XJ9BvOy9wuT6HLgFOo3nZe4XJ9BvOy9wuT6HLgFOo3nZe4XJ9BvOy9wuT6HLntG3bpSqa44i0tLf7nnwQKdFvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0OXAKdRvOy9wuT6Dedl7hcn0OXDBQgEAoAAgAAAAAsf/8AP/8AF0/6l/8AFntcUJ3VO3qR4zf+jP8AtcU+RB7PuthVjU0asZ4Zx3pr/c9ezu06lvGpGMc61w4/xfdkNxMVUrG9rQnb3MYfwpyp04f1H/7yYsKM3sozsaEac8J62tck/qsvOSpp3WmhUo6M62nnPdgmLtai5U6k7JSqwSSlraXDuenxDW0TNy97GoqcLyCowap92qOcrU1h+K4GtrcQVpXqSt4S/wBWLUMftTa8PBeBEt+0IxnWcqGqFbOqOrHe88H/AJNJXkdlUpRo6YzmpL92dKX0+/8AYTZLuaNOtC2mqUacqsnCWlYXB4zgnSt7ZVXSlTto0FmOda2i++e/OSlleydKlTUcOlJyUs/VvPce9a/s6knUn2fmo+9qo1FvxwC4etJ0KVoqn6eFSe1cYuS4d3e/E9rqtbU3RnGwp5rRUpprKX0aivoVjus26o6O6bnqz9sYwZubvaKitGNlFR7+/Dz/AIBsmztdF5VhStI1EuKU/wCMU8PL+y+5t2hCMaFOs6FHaKo4tQw4SWM8UjwfaydatOVvmFaOmUNX0+zPK6vaU6KowttEVPV/LLfDHH7guKmln2ldxVzCDtKMk1DjKGXxweU7e3p1LypsIyVKSUINftTl9WvsRLntGnUdObtsVY6cy1vDUfsZj2p/q1pSoKVOt/KGrlh+IWcotilWdarDT2fTlNJ5jHhGXg2vpglX1BO1nOdGjGpCaSdJrufDDwRaXaNGnUjKnZqMFFxlFybclLGcy/wYq31DYzo07TRGTTzrbeV4hLim3bHfb/8A88P9zHYP/GUf7f8A2ZHvLra7P9mNFOMO/OcZ4/IsLrY1oVNGrS+7OM8Ggl/9WlWNKkoXFedJT2bSjF92ZPvZvJUri2nU2EIVKc4rMFhSUnjiiLZ32zdRSpKdOosSg3j+sP6M2uL6DpbKlQ2cG9Uv3anJru4hbik25q29vXVBWVOUI4U3KOZSbxl5+neZlbxpbwpx/jGMcf03k8H2pQlKNSpYqdaKX7tbSbXc3EjrtCeLjVHVKukm84xh57gXCfTpxdCDoW1GriH+qpLNRS+r/r+impz0yUtCljjiSyn/AGifb9oW9LE4WWKqjjVtHjuxnSVzCZS6O7hTrXqpTox0xgptpYk0o5xnwIlnUo3TnSdpTh+xyhKEcOOO7L+pGn2pU/UqvGCTSS0t5TSWHzNn2jQgp7Cz2c5rDk5uWE+9RX0DW0W9qNShSs6VX9JCdSU5LMllY+/iVdN5nHhj9y/7ntUutVCnR0fwk5Zz35+xHhLDT8HkMTLob/8A/Inc27/9SnLXS+/BaonnO2hWu6EZr9qoRbXdnCbwVla/nK5dxFaZalJLOcYwsHtX7XqSuY140lFxjp05ymuOf+4b2if9SqtOjKlV2itoNRzTdKazlfT7kLtKnCNC2cYJOVJuTS73n6mte4snGWiw0yf1dRtR/pHpDtCi6UIVbNVHTzoeprg/o0u9BmZiVh+ltv1zg6MdGxzpS/8A1XH+yNbToVtpVlaU1GjTzGEVhSbfDV44PJ9rN3Dr7Hi6ejTn7Yz3EawvHRcv2KcJR0zi/qv9gtxaZGVO4t67dvCE6SUlKCxlN8U0es6adCLoW1GpDZraZWakZY4t/XkQ619S2UqVG22cZtObc3JvHcsvuRvR7Rt6eZU7LTVcdOraNpZWG9ILh6OVK3oUWranOdVOUnNZ4dySNNNGVrcVFQjF7SOn66U/on4GlK/o7KFKta7RQ/g1NxaT+jx3o0nfJ0qtNUFFVJqXB8I4+iQLhbTtaVGUKap2zhhbR1JLXLPf/X2I1vRtIO8ezjVhT0uHH7v6/wDncR59oW9RRdez1zitOpVHHUl3ZR4U7xRjXiqKSq4SSf8AHDz/AJBcWl3Eada2hUVCFOe12b0LCaayuBt2hXt6NSdCNlTcILS21+5vHfqIKu2rfY6f/c16s/bGMEmt2lb1HrnYRlWaw5a3pbxjOnxBaVSto06FFxp27lOOqTrSXd9Ek/oV/atO3jWeylFwaTxF5SbXFZNqd9RdKFOta7TZ8ISU3FpeD8SLXnTlJuFLRH6Ry3j/ACwkzFfjzAAYAAAAAAMBhRAIAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGFEAgAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYUQCAAABAAAAAAAAAk31nsXDE9SnBSTxjv+hGLyyo/qKNtn/wBqrpl/0/y/2wGoi/xA7T7OnbOCc86457sYf1R53lpstmnPMpwU2sfxz3IteN7Tf1cLj8Jv/wA5G1GrTnXu62tR2ccQlp1aUm45x9e75DWsKBprvWBh4zh48S1u7mhUoKErx1amtOMnTcWovg1l9/iT7m6pUbjQ73RShhOjsW1jHHj9c+ITVS0raErarVbeqEoxS+nHvImC+7Mp2k6deMpYpOvDH9ZelfbPBFb2rVryrONSCjo/bGC7or6Y6gmPy2La3tJRzUvdnLP8dm38o27QsadGNOUbjWqiyv26eHjxPKwtXWrQpr6vi/BLiz2v73Xc7SKWmDSgn3Yj3f8An3B/EEsKXZ9DYwq1LzZqbaS0N9zx3oh3FaVScptJOTy0lhFri0dlb7ac0tU8aEnn9337gYwr72zqUZ6W1JNaoyXc0/qR2n4d5eWF5GteRapYhClKMYvjwSfeefZ95WqutWniU6VJyprCxHPgvsDWP4p3FrvTX9kq8tIwjQcct1Ket/3n6fYm0bmrcW1yq09eiKlCTXFPPdn7m15f3NGhaqnLTmkm3hZeH3Z8PsCopSmWmuDWP7L66o1VdynSlGk9kp1JNcIZXF48eB5doSU7OMnc7aUauFPQ4vDXdxBqg9p2kaVaUIZcUk8v7rJ40qdJwnKVVqUcaY6c6vHj9C8vu0LmF7CnFpQzBOOF+7OE8+P/ANHhVpwhHtCMV+1Sjj7fuCzjFodWzoRdtmq4xqwUpvGcf0jwhaTmqsoNONPi2+DazhYRaw/9bs3/AKI/92Ys7qvCF7pqNaG3H7NyeQVCkafgYw/AtqUqlza1IN6qtOeuPi1J4l88Ty7alFVI0Yv9tGCh/b/5nzDNflvKxs6c4VKlSq406eM6VltvuSF9Z06cadSnVcoVE2tSw1gmdmSpUKEq1SLnCrLZ6F3NLi2/nget/a61VrzrKdJQ/wBBxeEm3wjj7BrX8UcIuTUUuLaS/t8CwuOz7anqg79bWK4x0PGe/Cl4lfGTTTT4p5X9lzSlb3zcZUtncaW1OP8AGWF9V9Azj+qyVrVVKNXH7ZScV48DxUW+5MuKl9dKxpNVmm5yg+7+KXBHpZTuaX6dTv4000nGkoZ1Rb+uPH7hdYVFva1Kim44/ZFzefBeH34iFKls5ylUcZrGmOl/u8eP0Lm3rVKdW+hCWmMYTlFL6PK4keN3cVrK52lVyw4Yz9MsLrCpw8Zxw8T2naVY04VGv2zbS8eHfktqtadek/091pUaWJ0GscEuLT+ppX7Ru42lvKNdptzTfDik+ATWFXcU6UVDTVcm45knHGl+H3PJprvR0UIqrcWbqLU9hqef+ZrLKir2pdVFirPXHKk4tLhj6Lw8ATCJh4zh48T2srbbVYU9WnU8ZxnBadoValenUqUbvVSWHKi44cF9MfbP1RC7E/4uj/1f7MFfrzjZ5p156/8A0WljHfmWn/BFLWl/w99/1x/+bKoJIAAyAAAAAAAAAAKIBAAAAgAAAAAAAASbS/r0YzjBrE1h5X9rh9+JGAW6SbG/r27k6bX7lh5WTS0u61GWqEuLWGmsprwa+p4gFyk3F46kdOwpQjnP7KaWf8ntvau8aqNKcorCnOmnLn9SAAXL2V1U2c6fDTOSlLhxyvAzc3dWro14bgtKlji1939TwALe9rd1aWvRjM46W2uKX28DzpVHCUZLGYtNZ+xoAPSvWlUnKcsZk8vC4G07mpKlCk8aYNtcOPHizxAHta3NSjPXDGcNcV4rDFpdVaMlKnLDxjisprwa+p4gFpdx2jVnDZqnTpwby4046U39/E9Kfa9wowg6dOcYJKKnDOMdz/sgALcpcO0rlVZ1XJSlNYmpLKkvBrwFx2jWqU1TcIRgnlRhHCREALlZPty7b1OFJyX8ZOnxj/TIkbuso1I5TVXGpvv4PPeeABcpSv6ylRl+3NFJQ4eHj4i3v61Oc5JRe0zrjKOYvLz3EUBLlZ9kXcYV51pTjBKEnpSwpN90UiunOUpOTfFtt/2+LNQC/wApKte0K1KLgownBvLhOOpZ8T23zdd2KejGNnoWjH/SV4C3LanUlGSlF4cWmv7RNn2vcNSUadKDksSlCmlJ/wCSAAlzCVQv6sKTpaIShnKU450t8MrwPSn2rcRjBaKbcFiM5QzKK8EyCAtyl0+0a8a06q06p5Uk1mLT71g1le1HGrFQhGNRpyUY4S092PAjAJcp0u1a7jJKnSi5LEpxppSa/s86V/VjS2WiEocWtUcuLffh/QigLcpP6+41UpKSTpRUYNL6Lx8e89K3alaaxs6UP3KT0U0tTXFZ8SEAlymVu0qsoSgqVOCl/LRDS5f2eFtXnSqRqRxqi8rPceQBcvdXdVQqw4YqtOXDweeB4AAAAEAAAAAAAAAwGFEAgAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCiAQAAE7s22oTVaVVScacNWItJviCItBBYXFpbSobeg54U9EozxlN92GjwqdnXsIa5W01Fd7a7gtSjAkULK6qJOFCUk84aXh3kmPY906O0VKTlqxo0/THeEiJlXAzBRytTws8X4L6lpRtezq0aqpKrGUIOSlJpp48Uu4LEWqgbKnNxclB6V3vHBf5Pfs23hVr06cm9Mnh47+4JSMC1jZ2NVVY0dpGpTTlibTUlHv7u4hW9jdVVqp28pLxSC1KOCVaUE6ko1LecsReYx4NNfV5+h50LO5qJOFCUk3hNL6rvCU8QS6HZ1xKsqLpSjLK1cP4rx/o0vLOtRm4zg0svS2sakn3gqUcFhZ21p+nnWqqb0zUUoNLv/sj11bylFUKVTjwxJptv7YC0jgl7svFOMZW0k5Phw5kqXY1xCvh21SpSUuLisOS+wNZVQJCta05S2dCbSlpx3td+E/vwNt3XuvR+lnqxnGPp/fcEqUUHr+nra9nspa840448jevY3dPGu3lHLwsrvfgCkcE+87JuKUIzcJNOOZ8P4PwZ4w7OvZQ1xtZuOM5wFqUYHpRt6086KTljGcLuy8I9l2deubgraWqPFrwz3BKlFBtUpzhJxlFxku9P6FhC3sYW9KrVjUk6jkv2ySxpePqgRFq0EipSjNzlRpT2cUm9TTa/vBpG3rNRkqUmpPTFpd78ECnkCRXsbuktVS3lFeLRml2feTxptpPK1LC+niCpRgSIWF3KMpK2m4xzl47sd5pRtq9RZhSlJZS4LPF9wKl5AkVLSvTnGNWi45a4P6rJ7do2uLupSpUnwliMVx+iBSCD2uLS4pY2lGUM92fqbTsLuMNpK3koeLQKlHB6UKanOEXLClJLPhl4LidhZt3FNW04bGLe1c85a7sru4hYxtRgE6zs6TpyrVqjjST0pR/lKXggkRaCCbWfZsoPZxqwmu5Sakpcu48rexu6qzTt5SXikCkcG+xqa9GzevONOOOf6PW4sbqks1LeUV4tcAUjg96VjdTg5wt5Sivql/5kk9qWeLmpClSeIxUsLjhaU2/kLU1avB717K6pxUp0JRT7m0ZoWN3UWqnbykvFIJUo4PWja15ycIUZSku9Y7v78DLtLhVNm6MtflxxBTxB7XFrXpNKpScW+7P1PEAGAwCAQAFr2LKCp3TlDVFUlmOcZ4+JVG9OtUipKM2lJYlj6rwCxNSmyu3V2dClSjSg5p8G23J8MtllZ06Ua1eCnXnNU5Kcp40vh4d/wDWTnSXLtO+aw7qbS4d/wDgLGXUmVapHs+koza1VZZw8ZwIuo7Dg5N7b6Z8pXOrUcFDW9CeVH6JvvPS3vLmlnZ1pRz34feDZ4whKTUYxbb4JIvezas6yqUJ2sacHF6pU4uDWPN4lFGTTTTw13NEmt2lezjondTlHwbCYzTSlO52M1HVsm1rwuGfpkkdh/8AF0f+r/ZkSNaqoOCqNQk8uP0bXcYpVZwkpQm4yXc19ARNTCfX7Rpw2sKNqqbnmMp6nJtZ448Mnp2ptlTtdnq0bKOnTn+X17vqVTbbyyRb393Sjpp3Eox8Ewu3V48/reP8/wBL+/8A6scf9it2tSPZ0FGbWqs08PvWnJAhcVoyc1Uak8pvPF57zG1qaFDW9CeVH6Z7sgnJdSnJ1OzpOTy0k3nv/cu8q+0de3q6s/zljP8AZ5SrVXpTqP8AZwj/APr9eBtcXdxVxtKznp4LP0BM2srCrOFlVlGlGb2seEo6l3eBGoXleNzCr+mWqK/hGGlNYeeH+e8j297c0k1Trygn34ZtO/u5TjN3M3OP8ZZ4oF/4l1qNLRSr0qlRQlV0uE3xT78p/VEmo6i7USbljarxx3IqLm7uKuNpWlPHdl9xvPtC8lozcyeh5jl9zBtCwhUnG3vXGbi9slleDk8nnd3Fb9Dbray4ynnj34fDkV23q6ZR2jxN5kvF+JiVWo4xg5txjnC+iz3g2XdzQnWvKaVZwboRlKUe/uecfdnl/ouwrOmqunXHDqNd/wBsFZ+qr64z20tUUlGWeKS7kbV7+7qJqdxKSeMpvw7gu0J3aGXGz1N6HTjq8MauOT2vP1e8Uo6v5R0YzjTw+MZKpXlxs9ltpbPy54eJvHtK9UNCupqOMYz9AbQtFV0S7RlSljGMNfeTTx8kKzuo7KVOtCo6c5L98XxUku7j3/0QYVakYyiptKSxJeOOKPW3vrqkmqdeUE+LSYTZt2lbSpVpwdTXjH7n3tNcMk9XFSnZW+mjCeZT/lDVj93wVE5yk25Sbb72/qe9DtC8px0wuZRivomCJ/UvsidZ3TlpjGOG6qxiKhjjwJVzbzq3NvGlU0UXD/SlHPBJNy++oqKl7cy16q8nrSUsv+WO7JrG6rqMYqrJKL1RSfc/FA2iqW1NUf0l1s9s1+3LqYw3q+iXczzv69WNOzUajS2alhP657yDW7QvKiancykmsNN8Md54zrVJKKlNtRWI/ZA2X869V9rKO0elSUUs8MOOWsf2RbPbK2vNlnVrj/Hvxl5+Cs/VV9ptdq9pnOr6+BKtb7Z0KsVUlGrKcZRa+2c8QuyRLX+ioa852/7M9+n6/wCMk1af1V/wk5aeGh4ljhnH37ihr3VepJSqVpSku5t9xj9VX2m02stp36s8QbJtS6o/p3Sp0KrTqKSdRppPwWF9fA97lQuY1qq2lOrCOakH/F48PDu7mV1xf3dXCqXEpJPKTf18TNftC8qR0zuZSj4NhNm/ZNtTq3EIT/i8trxws4LZyqXydGUZUqlOWUsPS1nuf3Rz0ZNNNPDXc0Sa3aN7UjpndTlHwyDHKIhntaMI3FRRpaIp4Sxju4Z/yS40pVrBRprMqVRuUV34afHBXV7itUw51XJpYWfojWjWqU5aoVHGXimEv9WkNFS1rylY04OCjplGDTznjxZjtXbKFrs9WjZLTpz/AC+vd9SFcdoXdVYqXMpLwb4C3v7ulHTTuJRj4JhdoX0tX6meP/XVqv7144/5wVvZzq/p7vXq2ez/AObP888O/wCpWxq1FPWqj15zqzxz/Z63F9dVUlUrykl3JsLsse0f1ObVUdWNlHRpz/L6/wCSXKUo9o3DTw1QbT+6hEo6d9dQg4RuJKD+iZr+quNTntnqktLf1axjHJA2TbSrUnaXalNy/g+Lzxcnlkm8nbxpWrlGtpVJOLpySWr696/lkpoVakYyiptRljUvHHce1vf3dJaadxKK8EwkZJ8+0IupXlO1qKlVUVPHCUWu557uPgYw7W4UlrqwlSzxypKEuH+GiBSv7uEpSjcSUpfyee/+zEb25VR1FXlrfByzxBskdoW1ONOlUp1JunPOmM++OHxIB63FzWqvVUqub8WzyDMgYDAIBAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAogEAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYDCiAQAAAIAAAAAAAAAAAAAAAAAAATqlCmrOnUUP3uq4t/ZLOCCW8LWvVsKap0nNqtJtL+g1EK+1tK1ZtQiuCy23hJfdmbqyr0tOpJqX8ZReU/6aLPs+jONG4oytdVXMZbJtpuP+OJrKtUh+njOw2FKNZS4uXjx/lxx9QusUiT7Iu4xbcY5Sy461qS8Wj1v+yXSpQmpx/hmf7135/wCXxRntLs6821apsnoy5a/o4vu4/Xh9B2jQqytracabcI0sSku6Lz9fALX+/iDWtKsJxhJLVJJrj9Jdx6w7MupVKlKME50/5LP3S4cyyu7OvVrW9SEM09nDM/8AlWnvy/obTclcdotPD2b/ANgaqzddztHBKLajqclJaUvuzS4sa9Nw1JNT/jKMk4v/ACTux9Mre4pqgqk24y2eWtSXfjHHgYuJVlCjTfZ+xhtVJZcst/X+XEJUUi3XZd1Ri5TUVh4xqWXxxnHgeFzb1aUtFSGmWM4/slduNu7rZf8AzY+ER7yjcU56audeE+Lzw+nEJMcTLOFvG1nVnaqpJVVFJtrg1n6G3Zs6NS7pYtIwjxzHLafB8eJ7dmO7/RVNhq17ZfxWXjTxMWEbz9dSdxGSm8/yWG0kw3H8Rowh+irPSsqtFJ444warse8a7oasZ0a1qx/R6U1/+FW4/wDvx4lpZWEKV1BQsZOMVnbym8PMX3LufhgGtuYL2pSso1aNHd6ltIRbkpS1fu72Uc+9nS3Mu1lKj+njJw2cP+Vac/XLYTFTVOz5OvUpUmmoN/uk0kkvFmKnZlxGUE3DE+EZKa08O/iWFSytKl1caYa1COpU4PGqWOKTX0z4GvaENNnSza7H/Vb0OTeOHe88UDVmfYeLlRU4ullZTqLVj68CJX7KrKrKENL/AJSSU03pT/7k69ozjf06rg1TlOGJ/R8F9SJVda1vNrKm4raSfFfyjnjjx4MLMQg0bapOM5xS0wWZPPI8i67WpQtqTpQkv9Wo58PIv4opQxMV+AADIAAAAAAAAAAAAAAAAAAAAYUQCAAABAAAAAAAAAAAAAAAAAAADaNSa7ptf02jUBW2uec6nnxzx5ic5y4ym2/u8moA2dSbWHN48MvHIa54xqePDPDkagDbXPGNbx4Z4chrlx/c+Pfx7/7NQBlNp5TafijMpzby5tv7vJqAMtt8W8v7iUm+Lbb+7MADaM5rum1/TwHUnnOt58cs1AGdTxjLx4ZM7WphLaSwu5ZfD+jUADbaVMY2kseGWagDMZNPKbT8UzMpyffJv68WagDZzm0k5NpdyzwQlOUsapN/2/oagCV2jdqtV1KGmKSjGOe5IigAmbAAEAAAAAAAAAAAAAAAAAAADAYUQMJrxGV4gZBjK8RleIRkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkMxleIbXiB2Oyp+nHkhsqfpx5I3ARpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBpsqfpx5IbKn6ceSNwBzC7WvfW+EZ3re+t8Il6I+Vchoj5VyLTO6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3te+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3te+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3te+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3te+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3te+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Q3te+t8Il6I+Vchoj5VyFG6JvW99b4Q3re+t8Il6I+Vchoj5VyFG6JvW99b4Rh9rXvrfCJmiPlXIaI+VchRu2MHHb3v/cvkug3vf8AuXyXQW5fNl12IOO3vf8AuXyXQb3v/cvkugs82XXYmTjd73/uXyXQb3v/AHL5LoLPNl12Rg47e9/7l8l0G97/ANy+S6CzzZddiZON3vf+5fJdBve/9y+S6CzzZddiDjt73/uXyXQb3v8A3L5LoLPNl12IOO3vf+5fJdBve/8Acvkugs82XXYmTjd73/uXyXQb3v8A3L5LoLPNl12Rg47e9/7l8l0G97/3L5LoLPNl12Jk43e9/wC5fJdBve/9y+S6CzzZddiDjt73/uXyXQb3v/cvkugs82XXYg47e9/7l8l0G97/ANy+S6CzzZddiZON3vf+5fJdBve/9y+S6CzzZddkYOO3vf8AuXyXQb3v/cvkugs82XXYmTjd73/uXyXQb3v/AHL5LoLPNl12IOO3vf8AuXyXQb3v/cvkugs82XXYg47e9/7l8l0G97/3L5LoLPNl12Jk43e9/wC5fJdBve/9y+S6CzzZddkYOO3vf+5fJdBve/8Acvkugs82XXYmTjd73/uXyXQb3v8A3L5LoLPNl12IOO3vf+5fJdBve/8Acvkugs82XXYg47e9/wC5fJdBve/9y+S6CzzZddiZON3vf+5fJdBve/8Acvkugs82XXZGDjt73/uXyXQb3v8A3L5LoLPNl12Jk43e9/7l8l0G97/3L5LoLPNl12IOO3vf+5fJdBve/wDcvkugs82XXYg47e9/7l8l0G97/wBy+S6CzzZddiZON3vf+5fJdBve/wDcvkugs82XXZGDjt73/uXyXQb3v/cvkugs82XXYg47e9/7l8l0G97/ANy+S6CzzZdQgAR3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB//2Q==\n" }, "metadata": {}, "execution_count": 1 } ], "source": [ "# @markdown\n", "from IPython.display import YouTubeVideo\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(YouTubeVideo(id=f\"3MyV1oxahC0\", width=730, height=410, fs=1))\n", "display(out)" ] }, { "cell_type": "markdown", "metadata": { "id": "XMhhhdFCP2wS" }, "source": [ "## Notes\n", "\n", "\n", " Click here to download notes\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "GGct1SKRP2wZ", "outputId": "84056721-2063-4fa9-a3f9-a1da6e16b5d3", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "cellView": "form", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ] }, "metadata": {}, "execution_count": 3 } ], "source": [ "# @markdown\n", "from IPython.display import IFrame\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(IFrame(src=f\"https://mfr.osf.io/render?url=https://osf.io/ntze2/?direct%26mode=render%26action=download%26mode=rende\", width=730, height=410))\n", "display(out)" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "6uTpVFWB5WIt" }, "execution_count": null, "outputs": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.13 ('mathtools')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3" } }, "colab": { "provenance": [], "include_colab_link": true } }, "nbformat": 4, "nbformat_minor": 0 }