{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r-xn3WLqP2wM"
},
"source": [
"# Video 7.5: Bayesian Inference"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "T9ckFFHNP2wQ"
},
"source": [
"## Video"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fTCqwicVP2wQ",
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 449
},
"outputId": "81f0ed0e-e712-4468-a9c7-4025fa7b047c",
"tags": [
"remove-input"
]
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Video available at https://youtube.com/watch?v=FeikJ4qeAp0\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
" \n",
" "
],
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4YFhsaGRoeHRwfIy0jIiIiHzEtLSUzLjgyODcvQy03PlBCPThLOjAxRWFHS1NWW11bNUFlbWVYbFBZW1cBERISFxYZLxsbL1c3OT9fXVdXV1ddY1dXYl1XYlddV1dXV1dkV1dXV1dXV1dXV1dXXVdXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABAUBAgYDB//EAD4QAAIBAwEFBwMCBAQFBQEAAAABAgMEERIVIVGR0QUTMUFSU6EyYaIicRSBscEjNEJyBjPh8PEkQ2KSsnT/xAAZAQEBAQADAAAAAAAAAAAAAAAAAQIDBAX/xAAfEQEAAgMBAQEBAQEAAAAAAAAAARECElEUEyFBMSL/2gAMAwEAAhEDEQA/APn4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDYnaHt/lHqNidoe3+UeoY+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6YdhXgsNidoe3+Ueo2J2h7f5R6g+mHYV4LDYnaHt/lHqNidoe3+UeoPph2FeCw2J2h7f5R6jYnaHt/lHqD6Ydh1wMao8VzGuPFcyvMZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jXHiuYGQY1x4rmNceK5gZBjXHiuY1x4rmBkGNceK5jVHiuYHnsK49cPnoNhXHrh89C/BHMoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsK49cPnoX4AoNhXHrh89BsG49cPnoX4AibTsvcXJ9BtOy9xcn0OXQBTqNp2XuLk+g2nZe4uT6HLgFOo2nZe4uT6Dadl7i5PocuAU6jadl7i5PoNp2XuLk+hy4BTqNp2XuLk+g2nZe4uT6HO2ltUrVFThjU84y+CyYubepSnKE1iUfEFf10e07L3FyfQbTsvcXJ9ChfZ9wqHftLR++/wAceBFBTqNp2XuLk+g2nZe4uT6HNQo1JKUoxbUVmT4I9YWrdCdbVujJRxjxz5gp0G07L3FyfQbTsvcXJ9DlwCnUbTsvcXJ9BtOy9xcn0OXAKdRtOy9xcn0G07L3FyfQ5cAdRtOy9xcn0G07L3FyfQ5yVvVjNQmtMnj6vv4P9jFxSdOcoNp6XjMXlP8AmCnSbTsvcXJ9BtOy9xcn0OXAKdRtOy9xcn0G07L3FyfQ5+7tXS7vMs66canh4Zzu+D2teyq1VRcJ0sy8Iuf6uQXWV1tOy9xcn0G07L3FyfQoLqynSSbnTll4/TPLIwSYp1G07L3FyfQbTsvcXJ9DlyRb2rqU6s9WO6ipYx45eAU6Dadl7i5PoNp2XuLk+hy4A6jadl7i5PoNp2XuLk+hSXlhGjFaqqdRpN01F7k/v4EILMU6jadl7i5PoNp2XuLk+hy5mKbaXHcEp0+07L3FyfQbTsvcXJ9CgvrGvbyUaiSbWVh5TNLm2qUnFSxmUVJYfk/ALTotp2XuLk+g2nZe4uT6HLgI6jadl7i5PoNp2XuLk+hy4BTqNp2XuLk+g2nZe4uT6HLgFOo2nZe4uT6Dadl7i5Pocue0bdunKpqjiLSw3veeCBTotp2XuLk+g2nZe4uT6HLgFOo2nZe4uT6Dadl7i5PocuAU6jadl7i5PoNp2XuLk+hy4BTqNp2XuLk+g2nZe4uT6HLgFOo2nZe4uT6Dadl7i5PocuAU6jadl7i5PoNp2XuLk+hy4BTqNp2XuLk+g2nZe4uT6HLhgoQCAUAAQAAAAAWP/D/+bp/tL/8ALPa4oTuqdvUjvm8UZ/uvB8iD2fddxVjU06tOd2ceKa/uevZ3adS3jUjFZ1rdv+l8Q3ExVSsb2vGdvcxh9FOVOnD9o/8AXJiwozfdRnb0I054T1ta5J/6ll5yVNK600KlHTnW4vOfDH2Ji7WouVOpKgpVYJJS1tLd56eIa2iZuXvY1FTheQUINU841Rzn9TWHxRra3EFaV6kqcJZqxahj9KbXDguBEt+0IxnWcqeqFbOqOrHi8+P8zR3kO6qUow0xnNTX6s6UvL7/ALhNku5o060LaajGnKrJwlpWFueM4J0re2VV0pRto0FmOda7xffPjnJSzvZOlSppYdOTkpZ47/A961/Z1JOpO2zUfjio1FvjgFw9aToUrRVO6hUn3rjFyW7w8fue11Wtqbozjb081oqU01lLywl5FZK6zbqjp8JuerPFYxgzc3neKitOO6io+Pjh+INk2drovKsKVGNRLelP6YZw8v8Ab7m3aEIxoU6zp0e8VRxahhwksZ3pHhtVOtWnKnmFaOmUNXl+55XV7SnRVGFLRFT1fU23uxv+4LipWfaV2lcwg6NGSahlyhl78eZ5Tt7enUvKndxkqUlGEGv0py88fYiXPaNOo6c3SxVjpzLW8NR/+JmPan+LWlKmpU631Q1csPiFnKLYpVu+qw021OU0nmK3RlwbX2JV9QTtZznCjGpCcUnSa8H5PBFpdo0adRSp0FGKjKMouTbkpeOZfyNat9Q7mdGnR0Rk1LOtt7glxTbtjxt//wCeH9x2D/nKP7v+jI95dd73f6caKcafjnOnO/5FhddzWhUxq0vwzjO5oM3/ANWlWNKkoXFecFPu2lGL8Myb3s3kqVxbTqd3CFSnOKzBYUlJ48CLZ33d94pQU6dRYnBvHzxNri+g6XdUqfdwb1S/U5OTXhvDVxSbc1be3rKgqFOUI6VNyjmUs4y8+XiZlbRo7Qpx+mMY4/ZvJHfalCUo1KlBTqxS/VraTx4NxPBdoTauNS1SrpJvOMYefAFwn06cXQg6FKjVxD/FTWail5v9v2KanPTJSwpY34ksp/uifb9oW9LE4UMVUsau8ePDGdJXMM5S6O7hTrXqpThHTGCm2liUsRzpzwIlnUoXTnSdGnD9DlCUI4ccffzI0+1Kn8Sq8YpNJLS3lNJYfM2faNCCn3NHu5zWHJzcsJ+KS8g3tFvWjUoUrOlV7mE6kpyScllY/uVlN5nHy/Uv6nrUutVCnR0/RKUs58c/Y8ISw0+DyGJl0N//AOonc27+um9dL77lqiedS1hWu6EZ/T3EZNeGcJ7isrX85XLuIrTLUpJZzjGNx7V+16krmNeMVFxio6c5TW/P9Q3tE/6lVadGVKr3itoNLNN0prOV/p+5C7SpwjQtnFJOVJuTS8Xk1r3Fk1LRb6ZPzdRtR/ZHpDtCi6UIVaKqOnnQ9TW5+TS8UEmYlYK1tv45wcI6O5zpS/8Ait/7ka2nQrd7VlRgo0aeYwisKTfhnjg8n2s3cOvo3uGjTq+2M+BGsLx0XL9KnGcdM4v/AFJ/cG0JilTuLevJ04QnSSkpQjjKb3po9p006EXQpUakFTXebs1Iy83x5EKtfUu6lSo0u7jNpzbk5N48Fl+CN6PaNvTzKnQ01HFx1d43FZ3N6QXD0cqVvQotUqdSdVOcnOOcLySPPTRla3FRU4xaqR0+elPyT4GtK/o91ClWo94qf0NTcWk/Ld5Gk71OlVpqmoqpNS3PdHHlgJcLadrSoyhTUbZwwu8dSS1yz4+Ph9iNb0bSDvHpjVhT0uGX9358OhHn2hb1FF16GucVp1Ko46kvDKR4U7xRjXioJKqkkk/pw8/zC3CXXjTrW0Kipwpz73u3oWE01wNr+vb0ak6EaFNwh+nLX6m8fVqIKu2rfucf+5r1Z+2MYJNbtK3qPXO3jKq1hy1vS34Z08QWlUraNOhRcY27lOOqTrSX8kk/Ir+1aVvGs1ScXBpPEXlJvxWTanfUXShTrUu87vdCSm4tJ+X3RFrzpyk3CGiPlHLeP5sJMxX48wAGAAAAAADAYUQCAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBhRAIAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGFEAgAAAQAAAAAAAAJV9Z9y4YlqU4KaeMePkRS8sqP8RRts/wDtVdMv9r/V/bAaiLQO0+zp2zgnLOuOfDGH5r5PO8tO67tOWZTgptY+nPgi133tN+bhccoVH/3yNqNWnOvd1sqPdrEJadWlZ06sfy+Q1rH8UDTXisfuNLxnDxxLW7ubepQUJV3Vqa04ydNxaT3NZfMsLm6o0bjQ6+inDEXR7ltNY4+eeITVSUraErarVbeqEoxS8t5EL7synaTp14yeKTrwx5ZWXhfbO5Fb2rVryrONSOnR+mMF4RXljqCY/LYtre0lHNSv3cs/T3bf88o27QsadGNOUamtVE5L9Ondx3nlYWrrVoU+L3vglvfwe1/e67nvIpaYNKCfhiPh/wB/cH5SCWFLs+h3MKtSt3am5JLQ39Lx4oh3FaVScptJOTy0lhFri0dlb985paqmNCW/f9wkQr72zqUZ6W1JNaoyXhJPzI7T5l5YXka15FqOIQpSjGL37kn4mlheVqvfVp4lOlTcqawsRzwX2C6x/FM4teKa/clXlpGEaDjlupT1vn/Qm0LmrcW1yqz16IqcJNb08+GfubXt/c0aFqqb05pJt4WXjyzw+wKilKZaaeGsfuX11Rqq7lOk40n3SnUk1uhnxeOO48u0JqdnGTq99KNXCnocXhrw3g1Qe07SNKtKEMtRSeX91k8aVOk6c5Sm1KONMdOdWfv5F5fdoXUL2FODxHME46V+rVjOeP8A0PCrThCPaEY/SpQx9v1BZxi0OrZ0Iu2zNxVWClJ4zj9keELSc1VlB5jT3tvc2s4W4tYf87s3/ZH+rMWd1XhC90ya0NuP2bk94KhSNMxhltSlUubapB/qq05qcfupPD+d549tSiqkaMfpowUP3fm+YZr8t52NnTqQqVKk3GnTxnSstt+CSF/Z06cadSnNyhUTa1LDWCZ2ZKlQoSrVE5wqy7vQvBpb238nrf2utVa85qdJQ/wHF4WW90cfYNa/ijhFyaivFtJfzLC47PtqeqLuF3sVvjoeM8NXEr4tpprc08r9y5pSt75uMod3X0tqcfpljigmP6rJWtVUo1f9Mm4rjuPFRb8Ey4qX10rGk1NpucoPw8EtyPSyncUv4dTuI009LjSUM6ot+eF5/cGsKi3talRTccfoi5vPBf33iFKl3c5Sk4zWNMdP1Z8d/kXNvWqU6t9CD0xjCc4peT3byPG7uK1lc95Nyw4Yz5ZYXWFTh4zh44ntO0qxpwqNfpm2lx3FtVrTr0n/AA9XSo0sToNY3Jb2n5mlftG7jZ28o1Gm3NN7t6XgE1hV3FOlFQ0zcm45knHGl8PueTTXijooJVbizdT9b7jW8/6mssqKnal1UWKr1xypOLS3Y8lw4AmIRMPGcbj2sbbvqsKedOp4zjOC07Qq1K9OpUo1tVJYcqTjh010zwIXYn+bo/7v7MFfrzjZ5p156v8AktLGPHLwRS1pf5e+/wB8P/2yqCSAAMgAAAAAAAAAYUQCAAABAAAAAAAAAlWl/XoxnGDWJrDyv33r77yKAt0k2N/Xt3J08fqWHlZNLW6rUZaoPe1hprKkn5NeZ4gFyk3F5KpHT3dKCzn9EEs/zPba1d41QpTlFYU5005cyAAXL3V1U7udPdpnJSlu35QuburVUNeG4LSpY3tfd+Z4AFve2u6tLXoxmcdLeN6T4HnRqOEoyWMxaaz4bjQAeletKpOU5YzJ5eFhG07mpKlCk8aYNtbt/wCrxPEAe1rc1KM9cMZw1vWfHcLS6q0ZKVN4eMb1lNcGjxALS7jtGrOHdqNOnBvLjThpTf3PSn2vcKMIONOcYJKKnDOMef7kABblLh2lcqrOq2pSmsTUllSXDHAXHaNapT7tqEYJ6lGEcJEQAuVk+3LtvU40nJfTJ08uP7MiRu6qjUjnKq41N+O558TwALlKV/WUqMv05opKG7hxMW9/WpznJKL7zOuMo5i87/AjAJcrPsi7jCvOtKUYJRk9KWFJvwikV05ylJyfi22/3ZqAX+UlWvaFalFwShODeXGcdSzxPbbN14Yp6MY7vQtH/wBSvAW5bU6koyUovDi00/uibPte4aklGlByWJShTSk/5kABLmEqhf1YUnS0wlDLaU450t7so9KfatxGMFim3BYjOUMyiuGSCAtyl0+0a8a06q06p5Uk1mLT8Vg1le1HGrFKEY1HFyUY4S0+GOBGAS5Tpdq13GSUaUXJaZTjTSk1+550r+rGl3WmEo72tUcuOfFp+RFAW5Sf4+vqpSTSdKKjBpeS48z0rdqVprGmlD9Sk9FNLU1vWSEAXKZW7SrShKChTgp/Vohpcv3Z4W1edKpGpHGqLys+B5AJcvdXdVQqw3YqtOW7g87v5ngAAAAQAAAAAAAAADCiAQAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhRAIAAAEAAAAAAAAAAAAAAAs1b9n06FGdVVW6il9Eluw8eDCxFqwE677MqRrd3STqJxU44W/D4ke4tLik0qkJRb8M+YJiYeIJT7Nvd77qe56fDz4Hp2j2ZWoPem4bv1YwsvyC1KCCZ2bb0Juq6urTTpueItJvDXH9zzupWTS7mNRPz1yT/oEr8tHBtOnOOFKLWVlZWN3Em2VvauhVq1VNqEopKDS8f3BEWgAnX9pQjTpVqTloqZWmeMpr9jyn2dexhrdKaj45a/t4halGBvVo1IY1Ra1LUs+a4m/8Jc61T7uWtrKjjfh+YSniD2uLW4pNKpCUW/DK8TavY3dOOqdOUY8WgVKOCXcW2ZwjSpVE5QT0ve235rHkedxZ3NLHeU5RT8MgqXgCVT7OvZfTSm9yfh5PwIzTTw1hrc0CmATLi1hG3oVFnVUck+G57jXZt7iT7qeI+O7wwFqUUFr2TYuVOpVdF1MLFOPlJ538iIrO5qym6dGWE3lLwj9ssFSig9Y29ZycFCWqOW1jeseJvOxuoyjB05KUlmKxvYSpRwe1zaXFLHeQlDPhnqekezb55xRn+nx3fz/AKAqUUHpRoVaktMIuUuCRtWtbiElCcJKT8FjxBTxBIuLG6pLNSnKKfm0RwAACAAAAAAAAAAAAAAGAwogEAAACAAAAAAAAAAAAAAXVStbwtLXvKXebp4zJpLf9vEpTedapKMYuTcY50rhnxDUTSyozqXM61WpOUIwhmSp+LivCK+27zPS70fwdBxVTT3rx3jTfx5FVQr1qctVOTjLijeteXNT66kpb8735hdvxN/4gr1Xc1I6pYjhJZ3Lcn/Uf8Qa+/8APGiD+3gV1WrUnJym3KT8Wz0qXlzKCpyqScF4Rb3IE5Xbazr3NJynTXlpk9OVh/8AgnXv+JZxq1IRjU7zTFqOnXHHArre6r0m3TnKDfjh+Ji4ua9V5qTc392C/wAbXkrpyj32rVpWNS/0+RP7OqyhZ3ElCM3rh+mUdS5FbWr1ajTnJyaWFnyS8je3vLmlnu5yhnxw/EJE1KzvFOvbUpziqc1U7uCWVFp+eny3/wBCVZUqcLqpDVXqVFCSnKWND3cPEoK9xWqvNScpv7vJ7PtO+aSdaeF4bw1tF2sLCgrqhRi/GhUxL/Y9/wDbBva3Mav8bUxNtqOFB4loy1uz9sZK6yu4UqNdZeupFQjjwS82RaNarTkpQk4yXmmDaqWTvId1ThSp1XpqqcXUalv9KwvgzewpVqVa4g6kGpLvISeU2+D/ALMhVr+7qOLnVlJxeVv8HxMXF9dVUlUqSkl5NhNltWt5VLiklOUErZSk4+OF4pHlU7p9n1HBVdPexw6jX88YKz+LuNUZ65aorEXnekvI2r311UTU6kpJ4ym+HgF2hYdpV60Z2iUmkqdNpJ+b/wDBG7bS/i63+7+yIlStUk4uUm3FJLPkl4IxVqznJym3KT8W/MMzlaxuP8rZ/wC6X9SbO4rbWS1PCnpSzuxp8MFE61VxjFyemO+K4ZM/xNfvO91vvM51eeQuyxtW1QvcNrDjjf4fqZ63ErdWtq5Ks44e+nJJas785XiVCr1UpJSeJ/UuPmeltfXVJNU6kop+KTBst7S67y8lUUZQaoP6vF4X1f0PDsWo5K4cnOU+73aX+rDf6sN+fgVv8Xca3PXLW1hyzvafkaUqtSElKEnGS8GmDZNuLqh/CypQhWxrUtVRpqL4LC8ybf3FZdoUUpNJOkks7t+M88lVc311VWKlSU0t+G9x5zuK0pqbk3NYxLz3eANlzJSUO0O7zr7xZx46dTz/AHPLsNVe/p95q+ifdZ448s/zK2nd3EZupGclN+Mk97yKt3cTmpznKUl4NvegbQnK6oRpV4RhXbmsS7ySai8+LwvEqyVW7RvKkdM6s5R4NkUJM2AAMgAAAAAAAAAAAAAGAwogEAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhRAIAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwogEAAACAAAAAAAAAAAAAAAAAAAE6pQpqzp1Ev1urKLf2S8CCW8LWvVsKapwc2q0m0vLcGohX2tpWrNqCW5Zk28KK4tmbmyr0tOpJqX0yi8p/zRZ9n0Zxo3FGVLVVzGXdNtOS/lvNZVqkP4eM7fuKSrKe9y47/AKt+AusUiT7Iu4xbajlLLjrWpLi0et/2S6VKE1KP0Zn+teOfJeaHaXZ1531appejLnr8mn9/28jPaNCrK2tpxi3CNLEpJbovPmFqP38Qq1pVhOMJJZkotb/KXgekOzLqVSpSjFOdP6ln9l/csruzr1atvUhHNPu6eZ+S0+OX5G03JV+0WspqnL+wNVZsu57x01pbUdTkpLSl95GlxY16bhqw1P6ZRlmL/mTux9Mre4pqmqk24y0Za1Jftv3GLidZQo03b9zDvVJZcst+f1bwVFIt12XdUYuU1FYeMall+WccDwuberSloqR0ywnj9yV2427utnylj4RHvKNxTnpq514T3vO7y3hmYhMs4W8bWdWdJVJKooLLa3NZ8jbs2dGpd0sUYwW/Mctp7nv3nt2a7v8AgqncatffL6Vl407zFhG8/jqTuFJTefqWG0kw3H8Rowh/BVnhZVaKTxvW41XY95jwhqxnRrWrH7HpTX/oq3l/jxLSysYUrqChQk4xWe/lN4eU/BeH2wDW3MF5UpWUatGj/DqWuEG5KUtX6vMpJ+LOluZ9rKVH+HUnDu4f6Vpz55bCY/1TVOz5OvUpUmmoN/qbSSS4sxU7MuIygnoxPdGSmtLx9ywqWVpUurjTHWoRUlTg8apeaTXlnga9oU9NnSzS7n/Fb0am2t3jv3oGv+sz7DxcqKcXSysp1Fqx57iJX7KrKrKENL+qSSmm8Rf9Sde0Zxv6dVxapynDE/J7l5kSq61red7KLiu8k1lfVHO/4YWYhBo21ScZzjjTBZk2zyLrtalC2pOlB/8ANqOe70r6V/3wKUMTFfgAAyAAAAAAAAAAAAAAAAAAAAGFEAgAAAQAAAAAAAAAAAAAAAAAAA2jUmvCTX7No1AVtrnnOXnjnfzE5zlvk2/3eTUAbOpNrDk8cMvHIa54xl44Z3cjUAba54xqeOGd3Ia5b973+O/xNQBlNp5TafFGZTm3lybf3eTUAZbb3t5f3EpN722392YAG0ZzXg2v2eB3k851PPHLNQBnU8Yy8cDPe1MJapYXhve41AA272pjGqWOGWagDMZNPKbT4p4MynJ+Lb897NQBs5zaSbbS8E3uQlOUvqbf7s1AErtG8VapqS0xSUYxz4JEUAEzYAAgAAAAAAAAAAAAAAAAAAAYDCiBhNGcoABlDKCAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAGUMoABlDKAAZQygAYyjDaA7HuqfpjyQ7qn6Y8kbgI07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A07qn6Y8kO6p+mPJG4A5hdrXvr+EZ2re+v4RL0R4LkNEeC5FpndE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2te+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2te+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2te+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2te+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2te+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Q2te+v4RL0R4LkNEeC5CjdE2re+v4Q2re+v4RL0R4LkNEeC5CjdE2re+v4Rh9rXvr+ETNEeC5DRHguQo3bA43a9/7r5LoNr3/uvkugty+bLrsgcbte/918l0G17/AN18l0Fnmy67IHG7Xv8A3XyXQbXv/dfJdBZ5suuyBxu17/3XyXQbXv8A3XyXQWebLrsgcbte/wDdfJdBte/918l0Fnmy67IHG7Xv/dfJdBte/wDdfJdBZ5suuyBxu17/AN18l0G17/3XyXQWebLrsgcbte/918l0G17/AN18l0Fnmy67IHG7Xv8A3XyXQbXv/dfJdBZ5suuyBxu17/3XyXQbXv8A3XyXQWebLrsgcbte/wDdfJdBte/918l0Fnmy67IHG7Xv/dfJdBte/wDdfJdBZ5suuyBxu17/AN18l0G17/3XyXQWebLrsgcbte/918l0G17/AN18l0Fnmy67IHG7Xv8A3XyXQbXv/dfJdBZ5suuyBxu17/3XyXQbXv8A3XyXQWebLrsgcbte/wDdfJdBte/918l0Fnmy67IHG7Xv/dfJdBte/wDdfJdBZ5suuyBxu17/AN18l0G17/3XyXQWebLrsgcbte/918l0G17/AN18l0Fnmy67IHG7Xv8A3XyXQbXv/dfJdBZ5suuyBxu17/3XyXQbXv8A3XyXQWebLrsgcbte/wDdfJdBte/918l0Fnmy67IHG7Xv/dfJdBte/wDdfJdBZ5suuyBxu17/AN18l0G17/3XyXQWebLrsgcbte/918l0G17/AN18l0Fnmy67IHG7Xv8A3XyXQbXv/dfJdBZ5suuyBxu17/3XyXQbXv8A3XyXQWebLrsgcbte/wDdfJdBte/918l0Fnmy67Iwcdte/wDdfJdBte/918l0Fnmy6hAAjvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/9k=\n"
},
"metadata": {},
"execution_count": 1
}
],
"source": [
"# @markdown\n",
"from IPython.display import YouTubeVideo\n",
"from ipywidgets import widgets\n",
"out = widgets.Output()\n",
"with out:\n",
" display(YouTubeVideo(id=f\"FeikJ4qeAp0\", width=730, height=410, fs=1))\n",
"display(out)"
]
},
{
"cell_type": "markdown",
"source": [
"## Notes\n",
"\n",
"\n",
" Click here to download notes\n",
"\n"
],
"metadata": {
"id": "ZEAMHL6C7zQh"
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n"
]
},
{
"cell_type": "code",
"source": [
"# @markdown\n",
"from IPython.display import IFrame\n",
"from ipywidgets import widgets\n",
"out = widgets.Output()\n",
"with out:\n",
" display(IFrame(src=f\"https://mfr.osf.io/render?url=https://osf.io/yctd3/?direct%26mode=render%26action=download%26mode=rende\", width=730, height=410))\n",
"display(out)"
],
"metadata": {
"cellView": "form",
"id": "pgXlBZTm7p4_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "b7da0a48-68e4-4940-dceb-ad38e8a79367",
"tags": [
"remove-input"
]
},
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
" \n",
" "
]
},
"metadata": {},
"execution_count": 3
}
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('mathtools')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3"
}
},
"colab": {
"provenance": [],
"include_colab_link": true
}
},
"nbformat": 4,
"nbformat_minor": 0
}