{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "r-xn3WLqP2wM" }, "source": [ "# Video 8.1: What are encoding & decoding?" ] }, { "cell_type": "markdown", "metadata": { "id": "T9ckFFHNP2wQ" }, "source": [ "## Video" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "fTCqwicVP2wQ", "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 449 }, "outputId": "abcc9b69-f978-401c-a274-f7d2dc3df8a9", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Video available at https://youtube.com/watch?v=xG4fe_v2NfU\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ], "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4YFhwaGQ4eHRsfIi0lIyIiHzEuLSgtNjcyPy0zMjI1P1BCNzhLOjgyRWFFS1NWW1xbMkFlbWVYbVBZW1cBERISGRYZMBsbL1c9N0JXXVddV1ddY1ddV1dXXVdYV1dXV11jV1dXV1dXV1dXV1dXX1dXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAABAUBAgYDB//EAEEQAAIBAwEECQMDAwIDBwUAAAABAgMEERIVIZHRBRMxQVFSU1ShYXGiFCIyI4GxQsEzc/AkNENicrLhBjV0ksL/xAAZAQEBAQADAAAAAAAAAAAAAAAAAQIDBAX/xAAfEQEAAgMBAQEBAQEAAAAAAAAAARECElEUEyExQSL/2gAMAwEAAhEDEQA/APn4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDYnSHt/yjzGxOkPb/lHmGPpj2FeCw2J0h7f8o8xsTpD2/5R5g+mPYV4LDYnSHt/yjzGxOkPb/lHmD6Y9hXgsNidIe3/ACjzGxOkPb/lHmD6Y9hXgsNidIe3/KPMbE6Q9v8AlHmD6Y9hXgsNidIe3/KPMbE6Q9v+UeYPpj2FeCw2J0h7f8o8xsTpD2/5R5g+mPYV4LDYnSHt/wAo8xsTpD2/5R5g+mPYV4LDYnSHt/yjzGxOkPb/AJR5g+mPYV4LDYnSHt/yjzGxOkPb/lHmD6Y9hXgsNidIe3/KPMbE6Q9v+UeYPpj2FeCw2J0h7f8AKPMbE6Q9v+UeYPpj2FeCw2J0h7f8o8xsTpD2/wCUeYPpj2FeCw2J0h7f8o8xsTpD2/5R5g+mPYV4LDYnSHt/yjzGxOkPb/lHmD6Y9hXgsNidIe3/ACjzGxOkPb/lHmD6Y9hXgsNidIe3/KPMbE6Q9v8AlHmD6Y9hXgsNidIe3/KPMbE6Q9v+UeYPpj2FeCw2J0h7f8o8xsTpD2/5R5g+mPYV4LDYnSHt/wAo8xsTpD2/5R5g+mPYV4LDYnSHt/yjzGxOkPb/AJR5g+mPYV4LDYnSHt/yjzGxOkPb/lHmD6Y9hXgsNidIe3/KPMbE6Q9v+UeYPpj2FeCw2J0h7f8AKPMbE6Q9v+UeYPpj2FeCw2J0h7f8o8xsTpD2/wCUeYPpj2FeCw2J0h7f8o8xsTpD2/5R5g+mPYV4LDYnSHt/yjzGxOkPb/lHmD6Y9hXgsNidIe3/ACjzGxOkPb/lHmD6Y9hXgsNidIe3/KPMbE6Q9v8AlHmD6Y9hXgsNidIe3/KPMbE6Q9v+UeYPpj2HXAxqj5lxGuPmXErzGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1x8y4gZBjXHzLiNcfMuIGQY1x8y4jXHzLiBkGNcfMuI1R8y4geewrj1YfPIbCuPVh88i/BHMoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNhXHqw+eRfgCg2FcerD55DYVx6sPnkX4AoNhXHqw+eQ2FcerD55F+AKDYVx6sPnkNg3Hqw+eRfgCJtOy9wuD5Dadl7hcHyOXQBTqNp2XuFwfIbTsvcLg+Ry4BTqNp2XuFwfIbTsvcLg+Ry4BTqNp2XuFwfIbTsvcLg+Ry4BTqNp2XuFwfIbTsvcLg+RztpbVK1RU4Y1POMvwWTFzb1KU5QmsSj2gr/AF0e07L3C4PkNp2XuFwfIoX0fcKh17S6vPjv7cdhFBVOo2nZe4XB8htOy9wuD5HNQo1JKUowbUVmT8EesLVuhKtr3Rko4x25BToNp2XuFwfIbTsvcLg+Ry4BTqNp2XuFwfIbTsvcLg+Ry4BTqNp2XuFwfIbTsvcLg+Ry4BTqNp2XuFwfIbTsvcLg+RzkrerGahOOmTx/L69j+xi4pOnOUHJNxeMxeU/sCnSbTsvcLg+Q2nZe4XB8jlwCnUbTsvcLg+Q2nZe4XB8jn7u1dLq8zzrpxn2dmc7vg9rXoqtVUXGrSzLsi5/u4BdZXW07L3C4PkNp2XuFwfIoLqxnSSbq05ZeP2Ty/wC5GCTFOo2nZe4XB8htOy9wuD5HLki3tXUp1Z68dVFSxjty8Ap0G07L3C4PkNp2XuFwfI5cAp1G07L3C4PkNp2XuFwfIpLywjRitVzF1Gk3TUXuT+vYQgsxTqNp2XuFwfIbTsvcLg+Ry5lJtpeISnT7TsvcLg+Q2nZe4XB8igvrGvbyUakUm1lNPKZpc21Sk4qWMyipLD7n2BadFtOy9wuD5Dadl7hcHyOXASnUbTsvcLg+Q2nZe4XB8jlwCnUbTsvcLg+Q2nZe4XB8jlwCnUbTsvcLg+Q2nZe4XB8jlz2jbt0pVNccRaWG/wBzz4IFOi2nZe4XB8htOy9wuD5HLgFOo2nZe4XB8htOy9wuD5HLgFOo2nZe4XB8htOy9wuD5HLgFOo2nZe4XB8htOy9wuD5HLgFOo2nZe4XB8htOy9wuD5HLgFOo2nZe4XB8htOy9wuD5HLgFOo2nZe4XB8htOy9wuD5HLhgoQCAUAAQAAAAAWP/wBP/wDe6f2l/wC1ntcUJ3VO3qR3zeKM/uuxv+xB6PuuoqxqaNWM7s47U1/uevR3SdS3jUjGOda3b/4vxDcTFVKxva0J29zGH8KcqdOH2X/zkxYUZvqozsaEac8J62tck+9ZeclTTutNCpR0Z1uLznswTF0tRcqdSdkpVYJJS1tLd2PT4hraJm5e9jUVOF5BUYNU+zVHOVqaxLxRra3EFaV6kreEv6sWoY/am1u3eC8CJb9IRjOs5UNUK2dUdWO153M0leR6qpSjR0xnNSX7s6Uu76/cJsl3NGnWhbTVKNOVWThLSsLc8ZwTpW9sqrpSp20aCzHOtdYvrntzkpZXsnSpU1HDpSclLPe/oe9a/s6knUn0fmo+1qo1FvxwC4etJ0KVoqn6eFSfWuMXJbuztfie11WtqbozjYU81oqUk1lLuaiu4rHdZt1R0dk3PVn6Yxgzc3fWKitGOqio9vbh/ANk2drovKsKVpGolvSn/GK3PL+i+pt0hCMaFOs6FHrFUcWoYcJLGd6R4PpZOtVnK3zCtHTKGru+jPK6vaU6KowttEVPV/LLe7G/6guKmln0ldxVzGDtKMk1DfKGXvweU7e3p1Lup1EZKlJKEGv2pvva+hEuekadRwm7bFWOnMtbw1H6GY9Kf1a0pUFKnW/lDVww/ELOUWxSrOtVhp6Ppymk8xjujLwbXdglX1BO1nOdGjGpCcUnSa7H3PBFpdI0adRSp2ajBRlGUXJtyUu3MjWrfUOpnRp2miMmnlzbeV4hLim/THbb/wD48P8Acx0D/wB8pfd/4ZHvLrrer/ZjRTjDtznGd/yLC66mtCpo1aX2ZxncGb/6tKsaVJQuK86Sn1bSjF9mW+1m8lSuLadTqIQqU5xWYLCkpPG9EWzvurdRSpKdOosSi3j7Yfcza4voOl1VKh1cG9Uv3anJ92WGrik25q29vXVBWVOUI6VNyjmUm8Zee7tMyt40v19OP8Yxjj7ZyeD6UoSlGpUsVOtFL92tpNrsbiR10hPFxqjqlXSTecYw8guE+nTi6EHQtqNXEP6qks1FLvf2+xTU56ZKWhSxvxJZT+5Pt+kLelicLLFVRxq6x47MZ0lcwmUuju4U616qU6MdMYKbaWJNKOcZ8CJZ1KN050naU4fscoShHDjjsy+8jT6UqfqVXjBJpJaW8ppLD4mz6RoQU+os+rnNYcnNywn2qK7g1tFvajUoUrOlV/SQnUlOSzJZWPr4lXTeZx3Y/cv8ntUutVCnR0fwlKWc9ufoR4Sw0/BphiZdDf8A/aJ3Fu/+JTlrpfXctUTznbQrXdCM1+1UItrszhPcVla/nK5dxFaZalJLOcdm49q/S9SVzGvGkouMVHTnKa35/wAhvaJ/qVVp0ZUqvWK2g1HNN0prOfD6kLpKnCNC2cYJOVJttLtee81r3Fk4y0WGmT73UbUfsj0h0hRdKEKtmqjp50PU1u8Gl2oMzMSsP0tt+ucHRjo6nOlL/wAq3/cjW06FbrKsrSmo0abcYRWFJvs1eODyfSzdw6/U73T0Yz9MZ7CNYXjouX7FOEo6Zxfev9gtxaZGVO4t6zdvCE6SUlKCxlN700es6adCLoW1GpDq11mVmpGXe338CHWvqXVSpUbbq4zac25uTeOxb+xG9HpG3p5lTstNVxcdXWNpZ7XpBcPRypW9Ci1bU5zqpyk5rO7uSNNNGVrcVFQjF9ZHT36U+5PwNKV/R6qNKta9YoZ0NTcWl4PHajSd8nSq01QUVUmpbnujjuSBcLadrSoyhTVO2cMLrHUktbz2/b6Ea3o2kHePq41YU9Lhv+r7/wDrsI8+kLeoouvZ65xWnUqjjqS7MpHhTvFGNeKopKrhJJ/xw8/3BcWl3Eada2hUVCFOfW9W9Cwmmt2426Qr29GpOhGypuEFpba/c3jt1EFXbVv1On/xNerP0xjBJrdJW9R652EZVmsOWt6W/HT4gtKpW0adCi407dynHVJ1pLs7kk+4r+ladvGs+qlFwaTxF5Sfesm1O+oulCnWtes6vdCSm4tLwfiRa86cpNwpaI90ct4/uwkzFfjzAAYAAAAAAMBhRAIAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGFEAgAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYUQCAAABAAAAAAAAEno+06+qqfWaW08bs5a7jfoywlcVer1acJtvGcY/+TwtK7p1YVPLJPn8F1dxdr+oqR/11YKH2/m+QbxiFVZ2UqtfqnLTjVqeOzGckbTlvTl/ZHQXcFSd1XXZUhFQf/M/l/g84zjRtqGm96hzTk2qbk5P6teHgF1URmSa7U19y/t52lS4rVoTX7KOrVo3KfZKWki3l3QnbyhO9dapqTg3TcWvFZfcE1RekrWFKpGMW3mEZb/Foh4OnvFojKtSSlXjSgnn/RDH8ku9/wCDmoqUpJLe5PH92DKKlZroij1ioyvUqzX8dDcc4zjUVc4uMnF9qeH90dI7m3VxGlPfcpaOvUeyT7P29/hkpXVq0XXpNRk5ZjJtZe59qYXKIeFCnrnGGcapJZ+7LGXRFNynTp3qlVjn9jg45x24ZCsP+PS/9cf8otbi6s6FzVqRVSdbMkk8KMW+/wAWExiK/VGovwYUW3hJtlvQu6tKwUoNKbrNasb1u34Fe6rUbajKnPTKs5TnNJZbz2A1hB6NtoVa9OnJtKTw8dvYyPKLWdzxnGToKX7rmxqtJVKkXqwsZwnhnlYXlavVq0qmHScJ/twkoY7MeAXVRqLfYm/sSujbWFWcoybSVOUt3iluJtnO5pUaTlfqjCTbhFQy5b97eO77kqmox6Rr6YL/AIUnjG5vSn2AjH+Odw8J47ewnW9pbzrUIKs5KpjX+3Gl+Cz2kq2u61xb3Kqy1KMFOLwlpeexHtT/AOP0d/y4/wC4IiFVKhRSq5rNShLEY6c6lnx7jWvaVaag5LdOOpY8Pr9Swg2qF412qrH/ANzNulb666u3/rP99JSl9XntCVFKbD8AdF1UJXELzT/T6rrZf+uKxjjg5+UpTk2/5SeX92wkxSypdG2yVFVbianWScVGGUk+zLK+5ounUlBtNxbWUdFGpTptWqq6a0I4hWmlhSe9xXgvBlP0laKjGkpZ66ScqmXnv3BrLH8edjZ9brbqqEKa1Sk1nH2XeYuLegnHqrnrFLd/Fxa7O1f9dhmwvZUXL+mpwmtM4S7JImVadKCpXNtKUFKelxe9xffh967QkREwr7q2qUZyhPGY9uOw8nFrtTRddI1bupfdVCedM1oUksJ47f8AJ6ym529zGd8q7jFPGhrS89qYNVNVtKsIQm1uqJtY7d27eYuaVKLioVXPMU3mOMPwLW96SvI29tKNw1KUZanu34e43urqnTu6FSosrqY5eMtNp/uwF1hSU6U5TjDGHJpLP1PaNqlW6urPQlJxlJJvGM9njvLKU7uNW3qK+62nKemM8Ye9rVFruPe3v7p9I9U6zdPrJrTu7EpYBrDnsb8Lf4bu0xh5xjeW1CrOjaVKtN4qSraHLG9Rxn/JrZdJf1pTrVMSlTcFUUVmL7pY7wlQrGmu1YJELTNvKtr/AIzUdOPHvyevSsLhSg6lwqqlH9k13o9KX/2+r/zo/wCAV+vKXR+JW8es/wCNGMuz+OX8ke5o9XUnDVnTJxz44LWr/wATo/8A5dP/ACV3Sf8A3mt/zJf5BMIwADAAAAAAAAAAAogEAAACAAAAAAAABKur+vVhCE2tNNYWF/kigLaVWv686UKMmtEOzdv+mTNDpGrCHVunTqQTylUhqw/oRAC5So9IV41etjpjLGMRilHHhjwFxeynHR+npQTeXoppN/3IoBcpi6TuetjVTSlGKj2bml3Nd5FlJ6tSSTzndux9jUAtY7ZuMqTpUnUX/iOmtXHxI1O8rRVVZT61Yk2sv+xHAW5b0qkoSjJdsWmv7Ga9aVScpyxmTy8HmAj2dzU6pUt2hS1dm/OMHrb9I1acOr0QqQzlRqQ1JP6EQAuUt9I3DrRrNpzj/FY3JeCXhvN6nS1zKMo4gnNYnOMEpSX1ZBAW5TKPSdaMIw0U5KGdDnBNx+zC6TuVWlWTSqSjhvH0S3fXcQwC5TLjpOvUg4aIQjJ5lohp1PxZqukK6lRl+3NFJQ3dy8fEigJcvdXdXRUhuxUact3enncbyv6sqKpShBqKxGTj+5LPYmRQC5WcrtRsY0lVTlObbS/0xXc/u95WAAmbWC6YudzlTpSnFYU5U05L+543PSFxVgo1GpYeVJx/d9s+BFAW5SbS9qUlJKEJRl2xnHUnjsF3fVqulS0xjH+MYLTFf2IwCXKdV6VuJShPTBVIPOuMMSe7G99+4VOla7jOCpUoRmsSUIYz9fuQQFuUpX9XqepcISis6XKOZRz24fcZ2jW1xm4wbUOrw45Tj9URAEuUqvf1p6N0YRg8xjCOEn448T0l0rXdWFXq6anFt5UMam1jMvEggFylWt/WpKSSjKM98ozjmL/sb7Tra3J0qUk4qOh01pSXZhdxCALl73d3VqtalFKKxGMVhJfRGI3NRUpUt2iUlJ7t+UeIBaTK+rN0nuzSSUd3cuzPieNarKc5Tl2ybbx4s0ALAAEAAAAAAAAAwGFEAgAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCiAQAAAIAAAATujbahONadVScacFLEWk3v8AqFiLQQWFxZ28qCrUHPCnolCeG032Ya7TwrdH3kI65204x8Wv+sBalGBIo2N1UScKEpJ5xheHaSX0PddSqipSbbeY47FjtBUq4GYLLS1JZeMvsRY3llawt41KdZzfWODljCe7O5eASItWg2VOenVoelPGcbs+GSV0VbUq1bq5trVF6cP/AFd3+4IhDBY9DdHwr1JRqNqMV3PH7m8JGlhZRnWnGplRpxk547f2/wDyF1lBBZKxlUtqMqVByqSnPOPBdmSFK2rqfVulLX5cbwU8gSK9hd08OdvKKbwsrv8AA97zom4pQjNwk045lu/g/BgqUAG9KlUnJRhByk+5I9LmzuaWOsoShnsyEp4AkOwu9Ll+nlpSy3jcl4mYdH3koa1bTcMZzgFSjAEmjYXc464W0pR8Uv8ArIEYHpSt6086aUpacZwuzLwvk2ubS4pY6yjKGezPeCniCSrC8cOsVtPRjOcdxi3sbqqs07eUku9LcCpRwb9TV16OrlrzjTjfn7FhS6OqQo3DrW7jKMIuDf334CxEyrASqtBONFQt5qU139k3n/T9DErC7UHN201BdrwEqUYHvb2dzVz1dCUsduEa3FtWpNKpScW96TBTyBYWFtQdGrWnTdTq3FKCeO3vbW/A6VtaNPqnCDg5w1OnJ5cQtflq8AtOjei67rU+ttZdXJ78rd2PH2CRFqsHtSta1SbjTpOTXcu41rUKtOWmdNxl4NAp5gkVrC7px1zt5Rj4tf8AWDNPo68lHXG1m4+OAVKMD0oW9apLTCm5S8EibXsurtNU6LjV63S89uMApXAmXVtmpppW1SOIKTjLe+ze/seVeyuqcVKdCUYvsbQKl4Ak0ej7ypHVC2lKPikZpdVRlKNa0cprH7XJxS++P7ApFBP6RoUFCjVpQcY1VLMW84cWux+BABMUAAIAAAGAwogEAAACAAAFr0NKCp3TlDVFU1lZxne+8qjenWqRUlGbSksSS70Fiam09XUqzpUKVNUYa01htvV4tk62hRi7qMZV5ONOanKeNLf27clAm1vTJNTpK9ksSuptYa7e59oajLqXUrVI9H0lGbjqqSzh4zgxN1HYQw5P+tJPGfArnWqOCg5vSnlLuTfaelC8uaacadaUVLtSfaDZ4FnUhLZ8P2v/AI77v/KVsW0008Nb19CW+lukPeT4hImHlGVz1MktXU6t+7dq7t/j2GtrWdOpCov9MkzCrVFB01N6G8uPdnxPMIv+k4/pozlHtq14zj/6YpS/9zNukoxp069WPZcaFH7NZkUVW4rTUVOo5KKxHPchUuK0oxjKo3GP8U+xfYN7LCtVqRsKKjNpSqTzh9uHuJNWjUrV7VKs4ylbxbmu3/Vn+5Syq1HFQc3pi20u5N9pt+pr5jLrXmCxF5/il3IJstYdT+iuOrVbTmO+pjtz3Y7zx6Wc3Stnl4dFZ7cdveRK3SF3UTU7mUk1hpvcaq8uer6rr5dX5c7gTlD26Kt5VKksVZQUYOUnH+TS7UiXX6p9HycFV09asdY0+7fjHcVVGtUpyUoTcZLsaPWvfXVRNTryknhtN+HYCJik7pqtPXRg6jUFRhlJ7t/b8EzpC4o0rzU6dw5LGhRktLWOxLHYUFWtUm05Tcmkks+C7Ee9LpK9hHRG6morsSfYF2eFzJSnNqOlOTePDf2F70jVt4VaMtFfdCDp9XJKOPoscTn234kmh0jeU46YXMox8EwkTSyo3Mn+vqQi6bai8d6zLf8A37SPGeqwWuTajcJb+5ad/wDuQOvrfv8A6j/f/Pf/AC353/3MdbU0aNb0Z1ae7PZkGy16Y/WfrJ6NfYtGnONOO76dpr0n1nU2vV6ur6vdpz/LO/s7yEukLxQ6v9TPRjGM93gYt7+7pLTTuJRXgnuBtC/Wr9UvXVr/AH14/wA4K+x/U/pLrVq0aVjVn+Wd/aVarVVPX1j15zqzvz9z2q9IXk867mUsrDy+1BdllH+XR32//o2s69WV9WUqjaaqJpvdhdiwU/6mt+z+q/6f8P8Ay/YxC4rRm5qo1J5y+/f2hNlxa23WWVFOpOOJylmnBy7+/HY/Ar+lrjrbictEo9ixLc9y70SKN5bOhTpuvVouGc6FlSy+3tTyeHSl5CtOLipYjBRzL+Usd7wFmfxO6Pqu2to14UtcpzcZ9uIxXd934m95YwVGtcYlUVVR0a4vVBt788yotry5pZ6uvKGe3DMq/u1Nz/Uz1NYbz2rwBtFUWGjr6Wr+OuOeJc2jvNpTzrxqlq7caf8AT/sc8Sn0nfYiv1c8R7N/YExypY2/VKyqZjUa679/VtJ47s5XYbWtzRqV7SPVTUYOSUqjTb3bt+O54KihdV6UnKnVlFvtafaK91cVWpVK0pNdjb7PsF2e1b9Xrq63PTq/q9uMZ7yw6Q/V7QSjq/lHq8dmnd2fTtKyvf3dSOmdzKUfBszDpG9jDRG6mo9mMhNoW1w/237o9uuOdPl/1fOSLc9fs6HWav8Ai/t1eXD+O0raFxWpS1U6jjLxRtWu7iomp1pSTed77+wLsv1Jq+k096tsr/8AVFbZ1akrS71Tct0Jb3nfntIX6u41a+ulq06c9+PA0jVqRjKMZtKSxJeOOwJs6J01GVvVcqv9OnH9tODknu7n2L6lPZShO7i50tUZTbcMavHdjvJsukLSUoT/AFNelpSXVwSxu8Hn/JX3F7OVxKvDMG5ZWO1dwXKYa3t1Vqz/AH7lHMYxSworwwRzMm2228t72YDEgACAAABgMKIBAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAAIAAAAAAACiAQAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgMKIBAAAAgAAAAAAAAAAAAAAAAAABOqUKas6dRQ/e6sot/THYQS3ha16thTVOk5tVpNpfYNRCvtbStWbUIrcstt4SX1Zm6sq9LTqSal/GUXlP7NFn0fRnGjcUZWuqrmMuqbabj/beayrVIfp4zsOopRrKW9y8d/8t+O8LrFIk+iLuMW3GOUsuOtakvFo9b/ol0qUJqcf4Zn+9duf9PijPSXR1511ap1T0Zctfc492/v3dw6RoVZW1tONNuEaWJSXYnnv8Atf38Qa1pVhOMJJapJNb+6XYesOjLqVSdKME50/5LP27OJZXdnXq1repCGafV08z/0rHbl9xtNyVx0g08Pq5f7A1Vmy7nrHBKLajqclJaUvqzS4sa9Nx1JNT/jKMk4v+5O6H0yt7imqCqTbjLRlrUl24xv3GLiVZQpU30f1MOtUllyy33/y3hKikW66LuqMXKaisPGNSy+7KXgeFzb1aUtFSGmWE8fcldONu7q5f+rHwiPeUbinPTVzrwnved3dvCTHEyzhbxtZ1Z2qqSVVRWW1ua+ht0bOjUu6WLSMI78xy2nue/ee3Rju/wBFPqNWvrl/FZeNO8xYRvP11J3EZKbz/JYbSTDcf4jRhD9FWelZVaKTxvwaroe8a7IasZ0a1qx9j0pr/sVbf/48S0srCFK6goWMnGKz17m8PMX2LsfhgGtuYL2pSso1aNHZ6l1kINyUpat/ayjn2s6W5l0spUf08ZOHVw/0rTnvy2ExU1To+Tr1KVJpqDf7pNJJfVmKnRlxGUE3DE90ZKa07u3eWFSytKl1caYa1CKkqcHjVLvSa7s+Br0hDTZ0s2vU/wBVvQ5N43drzvQNWZ9B4uVFTi6WVlOotWO/cRK/RVZVZQhpf8pJKab0p/5J17RnG/p1XBqnKcMT7nuXeRKrrWt51sqbiusk96/lHO/HjuYWYhBo21ScZzilpgsyeeB5F10tShbUnShJf1ajnu8i/iv+vApQxMV+AADIAAAAAAAAAAAAAAAAAAAAYUQCAAABAAAAAAAAAAAAAAAAAAADaNSa7JtfZtGoCttc851PPjnfxE5zlvlNt/V5NQBs6k2sObx4ZeOA1zxjU8eGd3A1AGynPGNbx4Z3cBrlv/c9/bv7fuagDKbTym0/FGZTm3lzbf1eTUAZbb3t5f1EpN72239WYAG0ZzXZNr7PAdSec63nxyzUAZ1PGMvHhkz1tTCXWSwuze932NQANusqYx1kseGWagDMZNPKbT8UzMpyfbJvv3s1AGznNpJybS7FnchKcpfyk3933fTJqAJXSN2q1XUoaYpKMY57EiKACZsAAQAAAAAAAAAAAAAAAAAAAMBhRAwmvEZXiBkGMrxGV4hGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQYyvEZXiBkGMrxGV4gZBjK8RleIGQzGV4hteIHY9VT9OPBDqqfpx4I3ARp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AGnVU/TjwQ6qn6ceCNwBp1VP048EOqp+nHgjcAadVT9OPBDqqfpx4I3AHMLpa99b4Rnat763wiXoj5VwGiPlXAtM7om1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDa1763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDa1763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDa1763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDa1763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDa1763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhDa1763wiXoj5VwGiPlXAUbom1b31vhDat763wiXoj5VwGiPlXAUbom1b31vhGH0te+t8ImaI+VcBoj5VwFG7YHG7Xv/AHL4LkNr3/uXwXIW5fNl12QON2vf+5fBchte/wDcvguQs82XXZA43a9/7l8FyG17/wBy+C5CzzZddkDjdr3/ALl8FyG17/3L4LkLPNl12QON2vf+5fBchte/9y+C5CzzZddkDjdr3/uXwXIbXv8A3L4LkLPNl12QON2vf+5fBchte/8AcvguQs82XXZA43a9/wC5fBchte/9y+C5CzzZddkDjdr3/uXwXIbXv/cvguQs82XXZA43a9/7l8FyG17/ANy+C5CzzZddkDjdr3/uXwXIbXv/AHL4LkLPNl12QON2vf8AuXwXIbXv/cvguQs82XXZA43a9/7l8FyG17/3L4LkLPNl12QON2vf+5fBchte/wDcvguQs82XXZA43a9/7l8FyG17/wBy+C5CzzZddkDjdr3/ALl8FyG17/3L4LkLPNl12QON2vf+5fBchte/9y+C5CzzZddkDjdr3/uXwXIbXv8A3L4LkLPNl12QON2vf+5fBchte/8AcvguQs82XXZA43a9/wC5fBchte/9y+C5CzzZddkDjdr3/uXwXIbXv/cvguQs82XXZA43a9/7l8FyG17/ANy+C5CzzZddkDjdr3/uXwXIbXv/AHL4LkLPNl12QON2vf8AuXwXIbXv/cvguQs82XXZA43a9/7l8FyG17/3L4LkLPNl12QON2vf+5fBchte/wDcvguQs82XXZA43a9/7l8FyG17/wBy+C5CzzZddkDjdr3/ALl8FyG17/3L4LkLPNl12QON2vf+5fBchte/9y+C5CzzZddkYOO2vf8AuXwXIbXv/cvguQs82XUIAEd4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf/Z\n" }, "metadata": {}, "execution_count": 1 } ], "source": [ "# @markdown\n", "from IPython.display import YouTubeVideo\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(YouTubeVideo(id=f\"xG4fe_v2NfU\", width=730, height=410, fs=1))\n", "display(out)" ] }, { "cell_type": "markdown", "metadata": { "id": "XMhhhdFCP2wS" }, "source": [ "## Notes\n", "\n", "\n", " Click here to download notes\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "GGct1SKRP2wZ", "outputId": "b1f659cc-507f-481e-c1c4-d43390b335e2", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "cellView": "form", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ] }, "metadata": {}, "execution_count": 3 } ], "source": [ "# @markdown\n", "from IPython.display import IFrame\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(IFrame(src=f\"https://mfr.osf.io/render?url=https://osf.io/hvsqf/?direct%26mode=render%26action=download%26mode=rende\", width=730, height=410))\n", "display(out)" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "274qKVlBQeC-" }, "execution_count": null, "outputs": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.13 ('mathtools')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3" } }, "colab": { "provenance": [], "include_colab_link": true } }, "nbformat": 4, "nbformat_minor": 0 }