{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "r-xn3WLqP2wM" }, "source": [ "# Video 9.1: What is machine learning?" ] }, { "cell_type": "markdown", "metadata": { "id": "T9ckFFHNP2wQ" }, "source": [ "## Video" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fTCqwicVP2wQ", "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 449 }, "outputId": "4e514917-81e9-4ce2-e3a8-70146f5e0d93", "tags": [ "remove-input" ] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Video available at https://youtube.com/watch?v=q3N961x6Smo\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " " ], "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDBoYFhsaGBoeHRsfIi8lIiIiIi0nJyctLi0xNzInLS03PVBCNThLOi0vRGFFS1NWW11bMkFlbWVYbFBZW1cBERISGRYZLxsbL1c9NT1XV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV1dXV//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAwEBAQEAAAAAAAAAAAAAAgMEAQUGB//EADoQAAICAAQEBAQFAwMEAwEAAAABAhEDEiExBEFRYSJxgZETMqGxFEJSwdEFI/Bi4fEVcoKSM0NTBv/EABcBAQEBAQAAAAAAAAAAAAAAAAABAgP/xAAdEQEBAQEBAAMBAQAAAAAAAAAAEQEhEjFBURMC/9oADAMBAAIRAxEAPwD8/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk8N5VKtG6T7r/kCIAAAE1gycHOvCmk3a3d1p6MCAAAAAACeHhSnJRirbItU6A4ATWFLI514U0m+7uvswIACgAJfDeXNXhur7kQAAAAAAAdjFt0lb6IDgJ4uDKDqSp9LX16EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAav7MtW5x6xUU16OyviMbM0kqjFVFfu+7KQAAAAthjNYc4Uqk03/43/JUAAAAI1fEwXrKE1LpGSUfS06MoA0YnFPLlhFQi90t35vmZwABdhY7jDEhVqaV9qdp/f3KQAL8KcMuXEUqTtONX3WvoUAC7iMZSqMVlhHZbvu2+pSAAAAAAAC2HEziqjJpdtCoAAAAAAAAAAAAAAAAAAAAAAF/CpXKTVqMbrk3sr9WJcXiNNOWj30Rzh5pNqXyyVN9Oj90d/Cv9UK65lX8lRQD0rxHShU8HTw6Ze99H3IxwcLK5P5fiZLvZPVT9hErzwbVhYc5wjDS55Gr3V6SGOvA88IwdrIkqda336biLWXDw3J0t+7S+5p4zhmsSWsFz+Zc0PwTySq3NSpRXNVuvde5HGjGSz5laik1ztae3cFZpRp1p6anDfhwTwVljmbTzbaO+u60KpYzjhwjFrXNmW9u+fpQKygFuDBSUl+arj6br2+xFVxi20luzhc4KMYv88na7Lr/nQnHD8c4z+bVJva73f8hKzA1R4eTUU9HnyU1teth8MpOPwm3FuvEtVW7fpqCspZg4eeSV11fRLdk8bCioqUG2ryu1Wq/k7w+mHivsl7v/AGBVWLKLfhjS87fqQLsDCTUpSbyx6btvZDD4eUlaqtlbq30XVhVILocNOW0Xz+hHEwZRrMmr1VgVnYq2l1LJ8PKMczWmn12tci3h4Tg8OSqpuls9mErPiQyyceja9iJrxsSbzN1Tk1rFfwOLwIQeSLuSdNp2n32KVkBrxajiPDWGnllXPM6epXxGFq5Rpwb0a5dmuTBVAAIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnhTyyjLo0/YlxUk8Sbj8rk2vJsqAE5YknVybpUtdvIgAAAO5XV1p1A4ShNxaadNbEQBLExHJ23r/mhN8RLO55nme7KgBd+Jnd5m3mza66rmdfFStNVGk1SVLXcoAIkpvK48m79v+SWFi5b2aejT2ZWALoYyWZZVllvF3y2dk48TGlcNYu46uvVczMAkXx4uaWj/AD5/U7hYzlOKk9M+Z31bVszgEauL4luc0mqc29EtdXWpyXHTd6pdKitO66MzAETxMaU/mk5V1dnZY02qcpNdLdFYCpZ3d27u75+ZLE4ic9JSbXdlYAAAACUI20uvUTg4tpqmgIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6jwrWHLIsk4XOTXPVPxctrruVN2PMSJYeFKXypuuhdw2XLLxKMnSt/p513LOIxoTjNx8LlJPLXS1+4KyvBklmcWldW0MRK7jdNc/qasNxxYpTkk46KWanXK09H6alUsSNYS3yt5l2zXoCs9AvnxGaLUtXdxfTqvI2cHOKeEotO2rXdvxN+miEN2PML8XTDhHrcn70vt9SlI1YkVLHy3omo6dlX7EGQGqfCeFZbc/wA8eavb6BcJ8qlJKUlcV19eXQFP6bFPHgmrTdV5oytF2FFxud5XFquubp9DTjYMXxMlvFtypb7Xl870KXrADRj4cc8VGLinpqn7qznE5E3GMWnFtXe9dUQV4cL5peZfxHCpTklKCV6LMcjgp4dxVy1bt66fpWzO8ThNycuWRSvzS/cp9s0o060fk7OG/E4RZZJReaLWV38/6qXtsU4UIJJSauV9fBW31EK7w2GnhYza1iotPp4kZ1HRu1p9Tfw0IrDmpWs8NZcl4llX01M0sBRUrnG0tFGSd6oJm9UUcNCxk4uLSSy6aa5ut9y7FwMNQk07aUUmnere7+unYRawk8WGWTV3RE0RwI1hyk6jJO3/ANvJfQiswNkuHw2k4ypyTajvlrk36aE3wkVCSrxKsrbrM71rtRYlYAb+G4eFRc0mm9ddtaUVXN/Yhw/DJzxFo8t0m3rrXLpuIVjNOH/djkfzpeF9Uvy/wdSrG8EdnpF6cu/0OcRBwamsybd1JVJNf5uBmBfxsaxZV1v3V/uUEUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0SxU8GMX80ZOvJr+V9TOAAAAEoQzbdL9iJbw8JOayfNv5VzfYCs0wh8JOUtJtVGPNX+Z9NBicS0/AoKvzRjXqrK8COeaza823+4R3hKWIm9o6+q2XuUu713PpuH/p8Umnbkv/GPokXzwEqWHGL01bWZ77dSVz/plfJWdliN1bbpUuyR6/8AUf6ZFJyjJXmqstb8v9zxmV0zc3q7D4mUbqnbvVXT6oqzO7vXe+ZwBUpTbdttvuzjdu3ucAFsOIlGOVPT/PYi8SWXLbpcr0IADtnCyWFWHGX6m17V/JWBL4jqrddL0OHCeFiZXdJ8mmrTAgapYbWGo080nnfWkqWnqyC4mvlhBPrVv6lbxJOWZt5ut6gRDfIvtYm9KfJ7KXZ9H3KJRadNU0FjhcoXh5ukqfZVoUkoYko/K2vJ0EaOHw8lYk1SWsU95Pkl27mfO7u9d7E5uTuTbfVuyIHW73LsLDjpKclXRO5PtXIoAE8XEcpOT3bsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3AwXNvVKK1lJ7Jf5yA5g4Lm6Xm29kurLMbGSWTD+Xm+c31fbohj46rJBNQ77yfV/wZwgXcNiZJplICvp+B/qSaV280n8q22/z1OY39ZUZZU1W+u/loqPnsBtSVf5oWcXHX3X+e5Ix/L/MrZx/9SWI7TWkaSSfPnbPKAK1mRfgcJPE+VaXVtpa9F1Iw4eUpOKq1d6qlW7sut/Ai4tqpSUq7pfdKvQ04E88YfEdSxFOCk+apZW3/AN2lhWDFwHBJumns000VHTgFseHm4uai3FbutCOFlvx3XarNE+JpYLg6lCNPzzP7pm2Epxi1wytSncopKVJxVRfRfMvQDPiPB+DDTEaUpc4rlHsZpYuHXhw9espN/ajQ4Rn8TCw60nmhrvyaTfv6GTHioypO6STadq61r1ArAAAAADRGSxFlk6kvlfXszOArsotNp6NHC+M1NKMnTWkZfs+xViYbi6apgiIACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfgYGa5SeWC3f7LqwOYGBmtyeWC3l+y6vsdx8fMlGKywWy/d9Wcx8fNSSywXyx6fy+5SEAAFAABdw+IoO3vy/ksxsaMurbMoDXrZAABlZg48oO4ur35p+aOYuNKbzSdsgAAAAHbOAAAAAAAAAAAABdh4qayz1jyfOPl27FIAsxcJx7p7NbMrLcLFy6PWL3X+czmLh5Xo7i9U+oVWAAgAAAAAAAAAAAAAAAAAAAAAAAACc8Nxq01atd11IpAcAAAAAAGgAALcDCUm7koxWrb6dlzYEuHwM1yk8sI/M/2XVnMfHzUkssY/LHp37vud4jHzVGKqEflX7vuygIAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF2FiKssvlfP8AS+pSAJ4mG4un6Pk11RAk5tpLktvU5QHAAAAAAAliQyyafICIAAAAAAAAAAAADRHhZyjmuOt1ckm/JPcqeFJLM06urrQk8a8NQaWkrT568vI0z47wRgop7WpU1oqVdOb9QnVk4PE4SMmn/b0vtf8AuvZlHBKGZ5szeSXy0l8j6lr4+NSqLbnFRlFvw0uSruvQq4fGgpR0y6yTe/hkq+moZmzVM5Rqoxa1u27fkQlhtU2mr1VrfyNMsPDipRck5ZLTTtZs2yfkWcZjqUZVPMpSTjHXwJX/ALLQLWFxfucPQ/ERxp5JeGDy5f8AS1SddE9RxeFBwjkjGM4XnSktm9N92luCs/Ha4jl+pKXukyrCwnOSiq167Luy3jJJuFNP+3FeqWxzg5qM1bpNOLfTMmr+oX6Sjw0W0viwdtLTNz56pFUcGTnkS8V0Snw04t3FrLu+XmmbMT5Z4/8A+kVH/wAn832f/sErHicO1HPacczimnvX7FNF0owyJp+O9VyS9v5L/wCn7Tyup0q8OZ1zpBaxA2rh/i4svyJq1KSyx05vom/uS/6bpmcqTnkjcXebo1y3CesZMTDrK1qpRv8AZ/VEErdI2K3hRSVu5YdedP8AkpxsKMHSlmknTWXTTfXmFzV0P6fLJNyVNVVyS3fmZ8XAcVbcX5ST+xfHDksPEhXic4Kv/YyAyuAswsFzuqpK226S9S6fB5Us0kpPZb3tzXWwVlBpx+EyJ1KMsrSklejf/ByfByjFyuLqSi0nqm70fsC4zgvxOFadKUZSussbbv21K54bi8rTT6MKgCx4MsubK6Tq60voFw89PBLVWtHsufkBWCcMOU3UYtvolZFRbdJO+gHAAAAAAAAAAAAAFy4d3Dap7e5HGw8r0dp6p9UX/HccOFVz9He69GVx8UK5x1XdPdBrYoLcLWM12v2f8WWYnDJQbTbcXUtNF5fU7gRUcra+ZtX0TVfuDM6ynZRp0zQ8KLuEU3JLR381bqv82IYeDb8Wiy5vQJFINuHw8ac001SpSvrrdeRnxoatxi1HydA3IqLeJXivqk/dIqNkJQc43+hLlo603BjGDbLBcpNuEqS2qnJ328+RHE4dKfWFXptaWsb800F8sh2EW3SL8OEXmm1UY14berexDFUdHHS1qr2aCRUC6OA81PSlbfRVf7nXhxllyXq6pte4IoBdPAqOZO1dbblISQAAAAlCDk6W9N+ysCIO0cAAF2Nw7hDDno1NNquzaa/zqBSAAAAAm8WTjlcnlXK9PY5mdVbq7rkRAA6pNO1ozgAnPFlJ3KTb7uzfwvFy/D4yzvMsrVvuk6+h5oCblTjiSjs2tb0fPqWS4uTWtW1TdLM/NnHws6ultmrMrre6u9ikHF0eKms1Sfi37lIAVv8A6VPxTw6T+JBpJq1mWsftXqZ8TipSq91K0+mi0XbRexVh4jjJSi6adp90cbt2Ena0YuPKUbqMU5W8qerXX3LVxMpwxNEkknoq1zLXzM2DjZbTSlF7p/ddGSxeIuOWMVCO9K7fm3uEi2XEweLOeVqM1qlum969b9GS/Hx+JCfw9cOkvFuo7J6b9zCAvnGnF42c1Uqay5fZ3fn3JP8AqOJyaWqlouipenYyEpQaq1urQJiXxmvl8NpJ1zrn7o1YGPFyxZOXw3JaNJutVmqubMJp4TDV55LwQ1fd8o+oNx3+ptPHnUcq0VLlSSoykpzcm23bbtkQZkwAAUAAAAAAEXSwkrTl4lyr6X1Arc20lyV/UimABa+Ik+deWnqcjjyV1J678yslCDk6SC3XExmf7Bo4ESjiOOzafZ0JYkpbtvzdkSWFG5JdWkBEEpqm10ZEDqlQs4AFgIt+HF7TXlLT67AVtnYXarflRZDAt05RXrf2O/FjH/49/wBT39FyCx3icR6Rbtr5n1f+23uZyUYtulqyINAAEC3hZ5cSDeykr8r1KgB6EOHjlxoOauOtU7WV0/oyqHB3CUr8SjmUf9N1f712KZ8RKUszerVWtNKr7E/xckklSarVbutgzNdjwcnBTVa3SvV1uaMODnwk1+iWePVraVdrcWZJcTNuLzO4u41pT7L0LlxtRTimp1lvlV3ogbmsht4aK+Gn4F4nncldLSkvPxexknPM7pLyVHcLGlB3F1e/cLq+GBGXxMSn8OL0SdN26Ss6uDjKpKeXDdU3q7brLS5lLxpztW3m5eW2gweIcE6Setq1dNbNBJpj4bhKUH+WbV1zWhbjcIkvBK3FqM75N8123RL+o4jzShpTkp97cVZjUnTV6PcLl1sx+EimorMpOeVZmnfeq0KuIwoRSyt3bVNrZc9NiM+JnJJOTaW3oMXiXLdRV7tRSsJma7jYCgtZrPzjT09SknxGN8Scp1WZ3SKwuNuPhqTUlJ5pRWWOVu6VNX5plEuGmoZ3Go+nPtuReK8kY/pbafnyN74+OJK5NpvV3FOOZKk3Wr16hO4z8AoZ3nzfLJqq/S+pnxMv5b9aPRnxOFNpucrWG8Ntx3u/F5amT4uHGTShnjS30ba5/wCwMVrh5OSjVSq6emlXevYv/wCnYmXM0kqbXO1FW2mtCOJxmbxNP4lU5Xo1VbV00OQ4uoKDimltbfnqk9QdRweGc4ykvy1olbfp00KC/CxYLWUJZru4yy/sV42LnnKTVW7CoAAKF+HjrLlnHNFbU6kr6MoAGnNgrVRnLs5JL6IrxseU6TpRW0UqS9CuUWm090cCQAAUAAAAAAABLClUovo0zR+Gcp7rK381rmZQFrZ+Hi0nUoVdqTtuldrYqxeHyxtST2dc6ezKZSb3dnAtxonwrWidtaNdL+5bwcZxnh6tKVtKyviOLc5NrS65K9O5X+JnT8T1KvM3izDjLEcVKTp21r08zjwY5mrdJW9r8vqVyxpOWZyd9Tr4iVNWkmqdJKyJcQnV+G67iDpp9GRAZbHgRcpuTpKbW6XqU4nDtJtO637XtZGOLJNu99+5L8VPnJhq4TwoxStvNSe2mvKyz8KryqWqdSvZeX2M85uTtu3t7BSCcMSNNrX1VM5GLe3LUtxcfMlGkktt2/dlcJ5XaAt4WL+JHTmiqUGqbTV7Wty6fFyfRPTVb0tl6HMPif1LN4s1vyC8W8Li234IWoye3ReZRPEv8kV5X/JbLi9bSt01mlu0975czPObk7e4N3iIADIAAAAAAAAATwmlJOStJq11QCCa8SvR79GaYfCm7akpbuMap1q6fIulhfElKMsRxUfEqj4cvJqK8yPBcNJS+IkpKLumtZK6enr9wxuseNiucnKW7/yis9CfBSlKpSSp18teH9ardar3J4fwsJpTVycU8ydq76a8gvr8eYSlBrRprzRPEmviOUaq72peVGyXExk4VLKrbdxct1rzd9NkF3WfG4RwSblHWOam1fsZ0a8fGwpxTjFxcdIxvMmrvf1fuWfEwp/Elien6u1ddfoEuqcThVGMHmi7k4tp2ltr9TPONNpO6e/7mzE4iELUFGacsy0aUa28+5yXFw+HKEYUny0rlTvfTX3BdYgaOKxozrLGqbS0S8PJPuZw0AAACeFgym2optpXS6Ldl2NwUoK278Cl9rj5qwlZiWR5XLkml73/AAco3/g3CErlFqUXs9pRezvyaBux55o4Ph1iSSlJRTaXd30NMeBgqzYiaa8XJJ+HZ3rSlfoZ8fHWeMoJKkqpVTX3CW/CziuGb/uRaccqd7XVJ0vPfzKsPg5OOd1GHVv/AB/8EcTiHJ2koqqpba7+5W5tqm3XmFyu4kMsmtHXNaogAFAAAAAAlBW0n1IgDTj4dOlh070q3ZRODTppp9y3Dx/Hma3VP238y6GJhq5N530ca0rZUGpmqocPcG7jen5l3KGqNClh01cqeu21cvrudwMSG1eKUXG3sr5/YEZkm3S1YaadNUzbDGWHLK1FLLTdW756rX2I/HWdvNGstap010vf1BMYzT8D+3dxty6roU4iWZ5dr0LMOUXBxk6p5l302CYoBr4icZJ6pu1lpU0uaZmg0mr1V6g3F+RfAutc+/otCPBxTxIp/ay/FxYyg4Z9c2ZOqS/0j8TBKLSTarStV1SdFb5WOUVejs7PDlF1JNEviKLi4fld292TxMdOSlro7y6UtdSMcdhCKw5Zm07W8dtyqUYraV+hZnh4k3J27utdO19yiTVutguuAAMgAAAADVxcsrlh5IKnuk792zKbuJwFJxfxMO8qUvHzWn7IhhYOFkcsSTvPlqLT0r5u4ZzeMgNi4fDnKORypypptZuqa8/uTxuDUppYVclJN/LLS/NXzC1gB6M+Ah/bSck5SSknV63VLltsQnDCWWSjaT8SjJtVyttaOwnphBq4jCtPEj8t1WXLXTQowppPWKkujbX2YWpPGdRrSUVSaetdDksSbVOUmu7Za8XCf/1V5Tf72aeF4rCa+HOLeHq/FNXHvGo3fYJuz6YYuUmoptvZK/odxeHlBXJfVP7E+Cf92Pe17pr9xg8Opurpq3K0qSXTULWclGLd1yVv/PUunw6c1HDebS3sq83dF3DYSjPFw5t5sso6K1a169gVhBLJbpW7201fodjhSe0W63pNhUAXz4WS6XaTSatN7WR4jBeHLK915/uEqo2LgdVc40n46u4+a5+hjNcMfPpUFOSyubbWnflfcG1PH4KKSrEjm1TWqtx8yx8PDDt1bUG/FqraVfvp5GTi/iKbWLeaOmpU8RtJNtpbK9EEm/qzhcbJNS5ap10ao7hcVOL3tO7UtU7VOznEwSyNKk4J+uz+qKkr0QXmp4uK5O3XoqS7I78ZynmxLl1t6kfhSy5qeXrWhpeHhwjck8S21adJUl9dQKcbFi4qME1FW9XbbfP6FJZjQSbyu48mVhQGtYEPgqWdJuVbPotCicYpaO3fpQSqwAFAAAAAAAAAXcMrll/Umv4+pJ8Np4XbTp6UvR9NAsZwaocI7WbWLV3EYXCJy1lpTarW65A86pwMFzllW9N+xWb8DAy4qks2W0tVq739O5l4jDqTfJt01zQXcmKgX4OEnHM1J61Ud/MnPAhD5m3bpVXLqEjKCeJDLJq7p7mrh4xcV8ravNGvE+lWDMrGcNMFCN/EWt6Ja15/wdwfhrWTT1d6a9qQIygvhDDXzSb1rw+W+pbhYGG1Kbl4FSp72/JeYIzYkKa7pP3IGyDg3uvkSV1vz30szYrWZ0qVg3EWjhcnBOLq/Dqu+u/0J3hyaVOKT913739wRmBqm8NOLUXSdaPR1vuX4uLFWlli68Sa3tLpzWvuF8vPcWt1ucL8WcXBK7kudVp07lATQABAtwcLPaT8XJPS+3mVADVODw8NqWkpSTq9Uler6blWLxE5/PJvzKgEic8WUklKTaW1u6IABQAAC78TL4jnpb300d72u5SANMeKim/7caapq3r632O4nGuUs+VLEu3JXr6GUBJjWuMXzONSj8laJaJfSrRzG4u3BxuLTt9M13aMoBMa+K4tYi/Nbdu5Wk+3+4fHPI4JVar5pNeibpGQAmJ4eJKLuLcX1Tov/wCoYv6/ov4MoBGnjeKeLKLbbyxUU3vp5eZdi4EmkoQj8Ol46XTVuXLWzALBPxuwEpqKyuUsNPT9VvT0VtslJ4eHi4mWScJNpLxWle1rb0s8+wCPQWJhPSTThHRWnnqvytd73K4SXwnFSTaqeqXlKOvPZ+hjAI0cPgZpLMnTTa/1Vei9VRdgcDbbxLhC/bu+iMNnbYNrXPDisNRc42pNtJ3ulVVpyHDQgnFtxbyt5ZbZk9E+1amMAjasPDliy1ShGOZpPRtJWo360V404ShajGEk6pc119P3MwsEAAFAAAAOpXsB3DxHFpxdNcyb4md3f0XPsFw03+Vrz0+5XOLTp7he47KbbtvXqJTcnbbb6t2RARJTeur1313PRn/QsZcMuIpONW1zS6/c8w+jx/8A+vxZ/wBP/BuCvKovEvVpPmq3rS7A+ejNrZteToiDXPhUo6STlo6XSk/fULmVkBPFw8snFa66d+hFprR6BHADsYtukBwkpunG9G7oiAAAAAACzDxpR+V0Qbs4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEoTcXabT7ETsZU7pPzAt4ptzk3zd++ow+Hco5k1vST3bqzsuKbq4w2S+XoQeK6rZXm06hriU+Ga5pu6aW6fRh8PJOtNru9K8zmFiSzWtW3evPnqW4WNKTy0srrR7JLmDip8PK2nSrd3prsclgSSbey0/4LpcX45urUn9tiMeJWZtp68r38+oOKYxt0ty+eFNqPh1Sq00Z2zgRsXxqSUae2ZLxe5HE4KeT4m/6lzXn18zKThiNJpc9L5hbn2gW8NpiR8zmA0pK9u6vloWYjp5pTzSW1OwmKGjlGuUMOSbzU5NtX57NeXPyJPFj4XmTlGsrppeq2ruF8sajZqntGGXRxVNLW6vcjjZXPWXLXXNT6Wc+IpUnaqFX0a5/t6g+GclCDk6StlsIxcN4p3re9aVX1LXkg04S1i7eu67PYJFWNHNiTrSr300RQX47Td5813W+nTcsm8PLBaaaut9tU/ULGQFmNKLppJaapbWVhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdjJpprdFksdtUkop70qsqAKAAAAAAAAHTgA6DgA6cAAHTgA6cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD//2Q==\n" }, "metadata": {}, "execution_count": 1 } ], "source": [ "# @markdown\n", "from IPython.display import YouTubeVideo\n", "from ipywidgets import widgets\n", "out = widgets.Output()\n", "with out:\n", " display(YouTubeVideo(id=f\"q3N961x6Smo\", width=730, height=410, fs=1))\n", "display(out)" ] }, { "cell_type": "markdown", "metadata": { "id": "XMhhhdFCP2wS" }, "source": [ "## Notes\n", "\n", "\n", " Click here to download notes\n", "\n", "\n" ] }, { "cell_type": "markdown", "source": [ "\"notes\n" ], "metadata": { "id": "P7tXrFlRKyGi" } } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.13 ('mathtools')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "2f26a17d6a9624f855b5f9e02ffdc0ae71c8577a2562f495dada4b6f29d8bdd3" } }, "colab": { "provenance": [], "collapsed_sections": [], "include_colab_link": true } }, "nbformat": 4, "nbformat_minor": 0 }